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ABSTRACT

The applicable voting rule determines how closely collective decisions between three or more
options reflect the preferences of a given individual. We construct measures of this and ask
if a specific decision maker is more successful using plurality voting, plurality with a runoff
vote, pairwise majority voting or the Borda scoring method. Our first benchmark finding is
that if all voting weights are equal, then plurality rule maximizes the probability of obtaining
one’s individual top choice and Borda rule maximizes the voter-specific average ranking of
the outcome. This result generalizes to asymmetric weights in aggregate terms but not from
a single voter’s perspective. We use computational methods to identify the individually
most advantageous rule for any given weight distribution among three generic voters and
also for the ten largest shareholders in S&P 100 corporations. Practical recommendations
for the latter coincide in unexpectedly many cases with the analytical benchmark for equal
weights. We also find that the Borda rule translates voting weights into voting success the
most transparently and that traditional power indices for binary voting games approximate
success in weighted committees well.
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1 Introduction

Many important decisions are taken by vote not just in politics but also in business.
This includes elections of directors or chief executives, resolutions on important ac-
quisitions, critical facility choices, the selection of an auditor, etc. The adopted voting
procedure can make a big difference when the respective stakeholders disagree. This
paper therefore addresses a natural but computationally non-trivial research ques-
tion: Which default voting rule maximizes a given decision maker’s expected voting
success in the sense of reflecting his or her preferences the best? As far as we know,
we are the first to provide answers for decisions on three or more options.

To see what is at stake, consider three shareholders who command 45%, 35% and
20% of corporate votes, respectively These might be exercised directly in an annual
meeting or indirectly by controlling 5, 4 and 2 positions on the board of directors. Let
the shareholders have different views of five CEO candidates, labeled 4, b, ¢, d and e.
For instance, the first (largest) shareholder ranks the candidatesa > d > e > c > bin
strictly decreasing order. The second shareholder’s preferences areb > c>d >e >a
and the third one’sc >e >d > b > a.

One of the simplest methods to resolve the disagreement is a plurality vote:
everybody indicates their favorite candidate, and the one with the most votes wins.
Then a beats its competitors by 45% : 35% : 20% : 0% : 0% in the shareholder meeting
or5:4:2:0:0inaboard vote, assuming that preferences are expressed sincerely.
However, a is ranked last by two of the shareholders and a plurality that is not a
majority is legally insufficient in many settings (cf., e.g., §216(2) of Delaware General
Corporation Law; or §44 of Robert’s Rules of Order). So some board member may
propose a runoff vote between the plurality leaders a and b. If the suggestion is taken
up, b wins by 6 : 5 (or, analogously, 55% : 45% in a shareholder meeting). Pairwise
comparisons might also be extended beyond a and b: in a round-robin tournament
between all candidates, c would beat b by 7 : 4 and also win against 4, 4 and e.
This would make c the new CEO. The directors could alternatively translate their
preference rankings into scores for the candidates — ascribing, say, 0 points to their
lowest-ranked candidate, 1 to their respective second-lowest-ranked candidate and
so forth — and hire the top scorer. This method is commonly associated with the
French scientist Jean-Charles de Borda (1733-1799) and, in our example, candidate

IThis is an artificial example, but identical outcomes would result for some real share distri-
butions —e.g., the Eurofighter Fighter Aircraft GmbH (Airbus 46%; BAE Systems 33%; Leonardo 21%)
or, with suitable tie breaking, the early Apple Inc. (S. Jobs 45%; S. Wozniak 45%; R. Wayne 10%).



d would obtain a total ‘Borda score’ of 5-3 +4 -2 + 2 -2 = 27 from the board. This
exceeds scores of 20, 18, 25 and 20 for a, b, c and e — so d wins. Or directors could each
approve as many candidates as they like and pick the one with the highest approval.
The first shareholder might approve a, d and e from top down; the second only b and
¢; the third c and e. This yields a top 5 + 2 = 7 approval for e versus only 5, 4, 6 and 5
fora, b, cand d.

So every candidate is a winner: it all depends on the voting rule. Having a say
on the latter is hence valuable for any forward-looking decision maker who wants
their own favorite to win. In the example, the first shareholder would succeed
with plurality rule, the second with plurality runoff rule and the third if enough
pairwise comparisons are made. But situation-specific deductions of which rule to
use demand considerable information and not even the chairperson of a board or
committee can pick a voting rule as he or she pleases ad hoc. The applicable method
for taking decisions is typically determined beforehand in statutes, charters, by-laws
or laws; or there are institutional defaults with deviations requiring a justification]

It is important, consequently, to evaluate the success implications of adopting
one voting rule rather than another from a longer term or a priori perspective. Is
there any general (dis)advantage of using, say, plurality rule vs. pairwise voting
when an individual’s objective is to elect his or her personal favorite with maximal
likelihood? What if he or she wants to induce choices with a high average subjective
rank? Should the respective default rule depend on the distribution of voting rights?
Answers to these questions matter not just for shareholders and corporate boards
but many political institutions.

We consider a stylized collective decision-making body, generically referred to as
a‘committee’, and evaluate the agreement between collective choices and each mem-
ber’s preferences when either plurality voting, plurality with a runoff vote, pairwise
majority voting or the Borda scoring method is invoked | We do so for all possi-
ble preference configurations. The relevant players may wield asymmetric voting
weights, which can reflect votes controlled by shareholders, parties or alliances in a
parliament, representatives in a regional assembly, population shares in a polarized

2Implicit forms of voting are common and have defaults too: leaders may tacitly adopt the majority
view in their team to secure their position (cf. Leeson 2007); scores that independent interviewers
assign to applicants are totaled similar to Borda rule; or competing engineering proposals are dropped
successively according to which one is favored by the fewest project members.

3The rules are prototypical instances of a Condorcet method, a runoff rule and scoring rules (see, e.g.,
Felsenthal and Nurmi 2018). Approval voting needs a different model of preferences and is left aside.
We focus on sincere voters but also study success maximizers for strategic players (see Appendix|B).
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electorate, and so on. Player-specific weights will yield player-specific answers to
the question of which voting rule, a priori, reflects individual preferences the best.

Our first contribution to the literature is the construction of indices which oper-
ationalize individual success under a given voting rule as the expected congruence
between personal preference and a collective decision. The top choice index represents
the probability that one’s most preferred option is selected; the average rank index cap-
tures the expected position of the selected option in the personal ranking. With these
indices, we generalize the Rae index of success from binary to non-binary choices
(Rae 1969; also see historical notes by [Felsenthal and Machover 1998, p. 46). The new
indices quantify differences across voting rules and between asymmetric voters by
drawing preferences from probability distributions that are familiar from traditional
measures of voting power for ‘yes’-or-'no” decisions — namely, the Penrose-Banzhaf
(Penrose 1946; Banzhaf 1965) and the Shapley-Shubik power indices (Shapley and
Shubik 1954)ﬁ Neither matches the distribution of preferences in a given board,
annual meeting or parliament exactly but they provide complementing benchmarks:
one assumes independent idiosyncratic preferences and the other incorporates cor-
related attitudes that reflect a common interest. The respective success computations
can improve corporate and political decision-making defaults. They can also pro-
vide decision support on whether acquiring additional voting rights is worthwhile
or address concern that — for given voting weights — a particular method (dis)favors,
for example, some large shareholder or a minority group.

As a second contribution, our extensive a priori computations provide a new
reference point for anecdotal evidence on how sensitive collective decisions are to
the adopted voting method for more than two options. We draw on structural
equivalence results by Kurz, Mayer and Napel (2020)| to investigate all possible
distributions of voting weights among three players who decide on three or four
alternatives. We show that success expectations can be locally very sensitive to
rule or weight changes, that the individually most advantageous rule differs across
players and that the respective success maximizer may vary non-monotonically in
weight. The assumed a priori perspective complements illustrative a posteriori
comparisons for single preference configurations (see, e.g., Riker 1982, Saari 2001
or Felsenthal and Nurmi 2018) and historical case studies: for instance, Leininger
(1993)|scrutinizes the ‘fatal’ voting procedure that moved the government of reunified

4Voting power and success differ conceptually. The former refers to the ability to influence the
voting outcome, and the latter refers to the individual evaluation of outcomes. Your vote may makec,
d or e the winner (power), but all may be evaluated low compared to your favorite option a (success).



Germany from Bonn to Berlin; [Iabarrok and Spector (1999) suggest that Borda’s
method might have avoided the US civil war; Maskin and Sen (2016)| reason that
Donald Trump owes his 2016 election to the use of plurality rule. We also analytically
derive success-maximizing rules if an arbitrary number of players have equal voting
weights: choose plurality rule for the best chance to make your favorite win or Borda
rule for the highest expected rank of the winner. These recommendations extend to
arbitrary weight distributions if the objective — similar to Apesteguia, Ballester and
Ferrer (2011) — is to maximize the weighted total success of all voters.

The third contribution of our study is to bring the obtained analytical insights to
some real-world settings and to demonstrate that, despite high sensitivity of success
maximizers to skewed voting weights in theory, a simple rule of thumb can be used
in practice. We apply computational methods (complete enumeration and Monte
Carlo simulation) to show that regardless of the pronounced asymmetry between
the top investors in S&P 100 corporations — with mean holdings of >10% for the
largest vs. *1% for the tenth-largest — they have almost identical interests concerning
which (straw) voting rule should be used to resolve disagreement. It turns out to
matter more whether a high average rank or getting one’s favorite better reflects
individual objectives than whether one holds the first or tenth-most shares: for
overwhelmingly many of the asymmetric shareholders, plurality rule maximizes
the top choice probability and Borda rule produces the highest average outcome
rank. This empirical finding echoes our analytical results for symmetric weights
unexpectedly well. We also confirm the economic relevance of the research question:
the voting method determines 1-3% of success a priori. This is in the same ballpark
as the average success advantage of 2.2% for the seventh largest shareholder of an
S&P 100 constituent compared to the respective tenth largest shareholder (with 1.78%
vs. 1.14% of a firm’s stock on average). We find that Borda rule links voting weights
to success the most closely. This means that it provides particularly transparent
incentives for investors who want an acquisition of additional ordinary shares to
translate into additional voting success, not just nominal voting rights.

Fourth and finally, regression analysis shows that the advantage of having a
higher relative voting weight is picked up surprisingly well for the S&P 100 data by
standard indices of binary voting power, which have, e.g., featured in recent studies
on common ownership (Azar, Schmalz and Tecu 2018; Backus, Conlon and Sinkinson
2021). The literature on a priori success has remained restricted to binary choices
long after Rae’s (1969) first investigation (see, e.g., Laruelle, Martinez and Valenciano
2006 and references therein). The present study generalizes success analysis to richer
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decision-making problems but, at the same time, it contributes evidence in favor of
using common power indices as viable approximations also for non-binary choices.
We acknowledge that voting in business or politics is usually a less formal affair
than in our model. Controversial decisions are often predetermined in private by a
few key players without fixed rules. Then a pre-selected favorite is proposed to the
plenary meeting as a simple ‘yes’-or-‘no” motion, potentially presenting even nar-
row winners from earlier stages as consensual choicesﬂ However, predetermination
dynamics are likely to be influenced by who controls how many votes and procedu-
ral defaults for dealing with disagreement. To the extent that the defaults involve
plurality-style endorsements (possibly with an eventual focus on two contenders),
pairwise candidate comparisons or score assignments, the present investigation ex-
tends beyond settings with binding official rules. Weighted committees can thus be
viewed as at least first approximations also of early straw voting stages in which,
say, a CEO candidate or acquisition target is singled out from an unofficial shortlist ]
We next explain in more detail how this investigation connects to previous anal-
ysis of weighted voting and axiomatic assessments of social choice rules (Section 2).
The framework of weighted committee games and our measures of a priori voting
success are introduced in Sections [3jand l] We then consider a wide range of small
committees in Section[§and actual voting share distributions in S&P 100 constituents
in Section 6l We conclude in Section[7} Appendices[A]and [B|assess the robustness of
our findings regarding the adopted tie breaking assumption and strategic voting.

2 Relation to the Literature on Weighted Voting

Individual a priori evaluations of voting systems date back to the Constitutional
Convention in Philadelphia in 1787 (see Riker 1986). However, investigations have
mostly been restricted to binary decisions. In particular, various measures of voting

°For instance, of the nearly 800 votes from 2017 to 2024 on issues that require only a qualified
majority in the EU Council of Ministers, about 81% of the motions would have passed also un-
der unanimity rule (own calculations, data retrieved from https://www.consilium.europa.eu/en/
documents-publications/public-register/votes/). The IMF stipulates that “a shortlist of three
candidates” is prepared for the position of IMF Managing Director and that choice from it is “by
a majority of the votes cast” on the Executive Board (IMF Press Release 16/19). Quite magically, a
single consensus candidate has always emerged before any competitors were officially shortlisted and
rejected. See Mayer and Napel (2020).

®We point toMcCahery, Sautner and Starks (2016) or[Bowley, Hill and Kourabas (2024) for evidence
on how shareholders exert power through behind-the-scenes interaction and (Gantchev (2013)|on the
costs associated with different forms of shareholder influence.


https://www.consilium.europa.eu/en/documents-publications/public-register/votes/
https://www.consilium.europa.eu/en/documents-publications/public-register/votes/

power have been defined and applied to weighted voting games or more general simple
(voting) games formalized by von Neumann and Morgenstern (1953, ch. 10). The
Penrose-Banzhaf and Shapley-Shubik indices are the most prominent such measures
(Penrose 1946; Banzhaf 1965} [Shapley and Shubik 1954)[|] They map a given distri-
bution of voting weights for binary ‘yes’-or-'no” decisions (or sets of winning and
losing coalitions) to individual decisiveness and a priori influence.

Analogous investigations of preference satisfaction and voting success have re-
ceived less attention. A reason for this is that being successful is commonly seen
as a trivial corollary to holding power (cf. Barry 1980). The probability of obtaining
the preferred outcome (voting success) is, in fact, an affine transformation of the
probability of being decisive for the outcome (voting power) if all ‘yes’-or-‘no” con-
figurations among players are equally likely (Dubey and Shapley 1979)f| The vast
literature that has studied voting rules in the US Electoral College, the UN Security
Council, the Council of the European Union, national parliaments, the European
Central Bank or publicly traded corporations (see, e.g., Leech 1987, (1988, |/Azar et al.
2018 and the contributions in Holler and Nurmi 2013) hence focuses on decisiveness.

However, Laruelle et al. (2006, p. 197) note that “practitioners have often raised
objections about the power indices approach.. . . [and ask] why pay so much attention
to decisiveness, when success seems a more important issue for the involved voters?”
Moreover, the mathematical links between power and success are fragile. Their affine
relation collapses already for mild interdependencies among voter preferences, such
as the preference model underlying the Shapley-Shubik index (see Kirsch 2023)).

The connection between power and success can even be non-monotonic if choices
concern more than two options. For instance, every voting procedure designed to
select the so-called Condorcet winner, i.e., the winner of a complete pairwise majority
contest if such contest creates no cycle, is subject to the no show paradox (Moulin 1988).
This implies that individuals or groups are sometimes strictly better off not casting
all their eligible votes. Weighted voting analysis hence benefits from dedicated
assessments of success especially for non-binary decisions.

Success analysis complements the traditional social choice literature by adding a
neglected individual-focused perspective. Numerous scholars — with seminal con-

’See |Felsenthal and Machover (1998), Laruelle and Valenciano (2008) or Napel (2019)| for
overviews. Extensions to weighted committee games are studied by Kurz, Mayer and Napel (2021)!

8Rae (1969)|conjectured and Taylor (1969)|proved that deciding by simple majority then maximizes
a priori success in the domain of symmetric rules. [Dubey and Shapley (1979)|extended the domain to
simple games. For given weights, the only degree of freedom in voting on two options is the majority
threshold. All rules we consider amount to using an optimal 50% quota in case of binary choices.
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tributions by |Arrow (1951), May (1952), Sen (1970), Gibbard (1973), Young (1974),
Satterthwaite (1975) or Moulin (1988) — have investigated decision rules such as
plurality or pairwise majority voting from an axiomatic viewpoint that highlights
desirable aggregate properties. But every voting method with normatively appeal-
ing properties has turned out to have unappealing ones too. The corresponding
investigations have produced detailed checklists on the (non-)fulfillment of various
desirable criteria by common voting rules (cf., e.g., Felsenthal and Nurmi 2018), de-
bate on how to prioritize them in specific contexts (Laslier 2012) and computations
of the likelihood of a given rule violating a specific property (see, e.g., (Gehrlein and
Lepelley 2017). Voting experts still recommend entirely different methods for good
normative reasons, while many practitioners know that a dictatorial rule would get
them closest to what they want if only the by-laws permitted. We therefore take the
position of a self-interested decision-maker and ask: How well does this vs. another
eligible voting rule serve my personal goals a priori?

3 Weighted Committees

We build on the generalization of binary weighted voting games (von Neumann and
Morgenstern 1953) to multi-option weighted committee games as developed by Kurz
et al. (2020). These games consider a set N = {1,...,n} of voters or players such that
each voter i € N has strict preferences P; over a finite set A = {ay,...,a,} of m > 2
alternatives. We may write a > b > ¢ or abc for P; when the player’s identity is clear.
The set of all m! strict preference orderings on A is denoted by P(A). A voting rule
r: P(A)" — A maps each preference profile P = (Py,...,P,) to a winning alternative
a* = r(P)P| Rule r is anonymous if for any P € P(A)" and any permutation p: N — N
we have r(P) = r(p(P)) where p(P) := (P,q), ..., Pyw)- It is neutral if for any P € P(A)"
and any permutation p: A — A we have r(p(P)) = p(r(P)) where, with slight abuse,
p(P) denotes the application of p to each alternative in the full preference profile.
We focus on truthful voting under one of the four anonymous rules that are
summarized in Table|l, assuming lexicographic tie breaking Under plurality rule r?

Shareholders’ rankings of options may differ if they maximize expected utility on incomplete
markets (see, e.g.,[DeMarzo 1993). Investment horizons and business philosophies often vary between
and even within founders and venture capitalists, activist hedge funds and pension funds, or retail
and institutional investors (cf. Bolton et al. 2020| or Bubb and Catan 2022). One may also think of
proxy battles, disputes in family-owned firms, shareholders who co-own different other firms and
internalize spillovers, international investors subject to distinct standards for good governance, etc.

0Deterministic tie breaking simplifies the presentation. We show in Appendix |A|that all results
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Table 1: Considered baseline voting rules

Rule Winner a* € {ay, ..., a,,} at preference profile P = (P4, ..., P,)
Borda r*(P) € argmax _, Y. bia, P)

Copeland r“(P) € arg max,_, |{a’ €Ala >}\’A a’}

Plurality ’(P) € argmax__, |{i EN|Va' #acA: aPia’}|

=r"(P) if [{i e N|Ya' € A\ (" (P)}: r"(P)Pud’}| > &, else

€ arg max I{i €N|Va' #a€lag),ap}: aPia’}'
ae{a(l),a(z)}

Plurality runoff | r"R(P)

each voter indicates his or her top-ranked alternative and the one ranked first by the
most voters is chosen. This is the winner also under plurality (with) runoff rule r™® if
the obtained plurality constitutes a majority (i.e., more than 50% of votes); otherwise
a runoff vote is conducted between the alternatives 4y and 4, that obtained the
highest and second-highest plurality scores in the first stage.

Borda rule r® has each player i assign ascore of m—1,m—2, ..., 0 to the alternative

that he or she ranks first, second and so on. These scores b;(a, P) := |{a’ € A|aPua’}
coincide with the number of alternatives that i positions below a. The alternative
with the highest total score is selected. Copeland rule r considers pairwise majority
comparisons between all alternatives. They define the majority relationa >} 2’ :&
|{i € N | aPa’}| > |{i € N | a’Pia}| and the alternative that beats the most others
according to >}, is selected. 7 is the only Condorcet-consistent method among the

rules in Table[l} whenever some alternative a beats all others, then 7“(P) = a.

A weighted committee (game) (N, A, rlw) combines a set of players N, a set of alter-
natives A and an anonymous baseline rule r with a vector w = (wy, ..., w,) € INj of
voting weights: each player i can cast w; votes, e.g., by virtue of owning multiple
voting shares or controlling as many seats on a board. Preferences P; thus enter
into the final decision w; times, whereby anonymity is relinquished. The applicable
mapping from preference profiles to collective choices then is

rw(P) := r([P]"", [P2], ..., [Pu]®") = r(Py,...,P1, Py, ..., Py, ..., Py, ..., Py) (1)

w1 times wy times wy, times

hold also for anonymous random tie breaking. Possibly non-truthful strategic voting is addressed
in Appendix |B| It creates non-trivial equilibrium selection problems but the analysis can be adapted.
Our findings for truthful voting turn out to be relatively robust to strategic play.



Table 2: Effect of the voting rule on the winning option

Py | P, | P;
a | b | c rPlw(P) =a (a has max. plurality tally of 5)
d|lc|e "Rlw(P) =b (b beats a in runoff vote by 6:5)
e | d| d r“Ilw(P) = ¢ (c wins all pairwise votes)
clel|b ’lw(P) =d (d has max. Borda score of 27)
b|lal|a

Note: The table reproduces the shareholder example from the illustrating

how standard voting rules imply different choices for P = (Py, P», P3) when w = (5,4,2).

for all P € P(A)". The mapping is homogeneous of degree zero in w and so we may
equivalently consider relative voting weights w/ }_ w;.

Two committees (N, A, rlw) and (N, A, r’'|w’) are called equivalent if they produce
the same outcomes no matter which preferences P are considered, despite r # r’ or
w # w’. For example, both 77|(3,1,1) and 7°|(5,2,1) select player 1’s top choice for
every P, making player 1 a dictator. By contrast, Section [If's shareholder example —

summarized again in Table [2| — shows that committees which use ”, 'R

, 1€ and
r? are non-equivalent if w = (5,4,2) and m = 5. We are interested in committees
that are non-equivalent and compare a player’s success in such committees for all

conceivable preference configurations P € P(A)" from an a priori perspective.

4 Measuring A Priori Success

The a priori assessment of player i’s success in a given committee is contingent on how
the collective decisions r|w(P) are evaluated relative to i’s individual preference P; and
on the applicable distribution of preferences. For the latter, we consider preference
cultures that are standard in quantitative social choice analysis and are underlying
the two most prominent power indices for binary voting: the Penrose-Banzhaf and
the Shapley-Shubik indices (see fn.|7|above).

We highlight two benchmarks for how well a decision r|w(P) reflects given pref-
erences of voter i. Neither has a claim to be the ‘right” or universally recommended.
We construct one a priori success index for each: The top choice (probability) index (TCI)
takes a player’s success to mean having his or her most preferred option become the
collective choice. The average rank index (ARI) counts every outcome that is better



than the player’s bottom-ranked alternative as a partial success at least. The latter
index can also be interpreted as reflecting a linear utility function over the available
options. One can conduct general expected utility assessments by combining both
indices in the case of m = 3 alternatives.

4.1 Top Choice Index and Average Rank Index

While much of social choice theory focuses on ordinal preferences, our aim is to
express each player’s prospect of obtaining preferred outcomes — as choices from
A are taken according to rlw — by an interpersonally comparable number. Let us
therefore consider a player-independent success function o: A X P(A) — R such that
o(a,P;) > o(a’,P;) = aPa’, and o(a*, P;) = 1 (0) if a given committee choice a* is i’'s
most (least) preferred option. Our first benchmark is 0 = s with

1 ifa*is ranked top in P},
s(a*, Pl) = (2)
0 otherwise.

This equates success to getting one’s top choice.
A complementing, more gradual evaluation is achieved by s’s linear interpolation

|{a’ €A :aPua}
— 1 :

§(a*l Pl) =

)

This also attributes success to outcomes between the best and worst case and eval-
uates i’s median-ranked alternative as exactly half a success for player i. Function 5
or variations based, e.g., on a hyperbolic interpolation of s are compatible with inter-
preting (a priori) success as an (expected) utility. By contrast, piecewise constancy of
s clashes with P; being a strict ordering when m > 2.

Given some player-independent success function ¢ and probability measure Pr
on P(A)", we refer to the expected value of o(r|lw(P), P;) as player i’s a priori success in
committee (N, A, rlw). In particular, we define the top choice index

TCIi(N, A, riw) := E[s(rlw(P), P;)] = Z Pr(P) - s(rlw(P), P;), 4)
PeP(A)!

and, analogously, the average rank index ARI;(N, A, rlw) := E[5(r|lw(P), P;)] as the two
success indicators of our interest. TCI; equals the probability that collective decisions
match player i’s top-ranked alternative. ARI; is an inverse measure of the average
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rank of decisions according to i’s preferences: a value of x € [0, 1] means that collective
decisions on average correspond to the (m—(m—l)-x)-th bestalternative from playeri’s
perspective. TCI; = ARI; = 1 if and only if i is a dictator. TCI; and ARI; coincide with
the success index named after Rae (1969) when m = 2 (see, e.g.,Laruelle et al. 2006).
In case of three alternatives, which many of our later computations focus on,
working with TCI; and ARI; is without loss of generality. This is because the prob-
ability of the collective choice matching i’s second-ranked alternative evaluates to
2-(ARI;—TCl;) and that for i’s bottom rank is 1+ TCI; —2- ARI;. These probabilities and
TCI; suffice to compute a priori success [E[o(r|w(P), P;)] for any rank-based success
functio or expected utility E[u;(rlw(P))] for cardinal utility functions u;: A — R as
in the welfare analysis of voting with equal weights by Apesteguia et al. (2011).
Concerning the probability distribution over preference profiles P € P(A)" that
defines expectations, a popular default is the impartial culture (IC) assumption: all
players’ preferences P;,...,P, € P(A) are taken to be independent and drawn at
random. Then
Pr(P) = (mH)™. 5)

The IC distribution is underlying the Penrose-Banzhaf voting power index and has
served as the starting point for many computations in the analysis of voting. See
Klahr (1966), Fishburn (1971), Merrill (1984) or Nurmi and Uusi-Heikkilad (1985) for
pioneering assessments of voting paradoxes, and Gehrlein and Lepelley (2017)| for
many more recent findings.

The most prominent alternative to IC is the impartial anonymous culture (IAC),
which is underlying the Shapley-Shubik index. The IAC model is impartial regarding
all rankings 7 € P(A), just like IC, but assumes positive correlation across players.
The respective probability distribution is given b

m!'+n—1 n -
Pr(P)=[( n ).(nl’ oo, nt )] ' (©)

17 m!

Preferences in a real shareholder meeting or hiring committee will typically violate

"PFor instance, success could also mean avoiding one’s worst option, i.e., $(a", P;) = 1 & a* is not
ranked bottom in P;. Proposition[I|below would then call for a method known as anti-plurality voting.
We remark that if A represents a shortlist generated from a bigger set A’ O A of proposals then success
evaluations relative to A’ would need to account for possible asymmetries in the shortlisting process.
For instance, the largest shareholder’s favorite in A" might always automatically be included in A.
However, such privilege does not affect any success evaluations relative to A because each player’s
favorite in A is, by definition, an element of A.

12Gee, e.g., Berg (1985)|or[Kurz et al. (2021) for details and generalizations using Pélya urn schemes.
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the IC or IAC assumptions. Working with the probabilities in equations (5)—(6) means
doing thought experiments that assess institutions from behind a ‘veil of ignorance’.
One disregards historical preference patterns, recent alliances, logrolling, etc. partly
for lack of adequate data but also purposely in order to obtain a neutral constitutional
evaluation of voting rules. The resulting assessments — e.g., that player 1 will be 40%
more successful a priori than player 2 under rule r, whereas their success is identical
under rule r’ — reflect general procedural tendencies and the implied (un)levelness
of the playing field for decision-making. Corresponding numbers typically differ
from the players” actual (a posteriori) voting success in a committee since just a few
preference configurations determine the latter and real decision-making has social,
political or financial dimensions that are orthogonal to voting rules.

Because IC presumes all players to have independent preferences, it typically
yields an upper bound for success in adversarial scenarios where i’s preferences are
negatively correlated to those of others. By contrast, IAC provides a more consensus-
oriented outlook. It assumes some similarity in how players rank options and bounds
individual success for potentially even greater preference affiliation from below.

4.2 Illustration

For illustration, let us evaluate a priori success when our stylized shareholders with
voting weights of w = (45%, 35%,20%) choose between candidates A = {a,b,c}.
The six possible individual rankings in P(A) = {abc,acb, bac, bca, cab, cba} give rise
to 6° = 216 different preference profiles that may obtain for a particular decision.
Table 3| shows a selection of them, the respective winners rjw(P) implied by voting

{r, PR, ¥C, B} and associated success values s(rlw(P), P;).

rulesr €

For instance, the highlighted profile P = (cab, bca, abc) implies that c is selected
under plurality and Borda rule. In contrast, b is selected under plurality with runoff
and a under Copeland rule. So, at that profile, shareholder 1 is (fully) successful
under plurality and Borda rule. Additionally, half a success would be attributed to
player 1 by success function 5§ under Copeland rule (indicated by 0 in Table [3).

The corresponding expected values are shown at the bottom of Table 3| for the
IC and TAC assumptions. The preference similarity reflected by IAC raises a priori
success for all players relative to the preference independence assumed by IC. By
definition, success figures for ARI(-) are greater than those for TCI(-).

The benchmark success of an independent outsider or ‘dummy player” who has

12



Table 3: Tllustration of success computations

Pr(P) for s(-, P;) for player i =
P=(Py,P,P3) | IC |IAC| P lw®P) |1 2 3| Rw®)|1 2 3|r“lw®P)|1 2 3|FwP)|1 2 3
abc,abc,abc | 5= | % a |1 11 a 111 a |1 11 a |[111
abc,abc,ach | 51z | 1 a 111 a 111 a 111 a 111
abc,abc,cab | 5= | = a |110 a 110/ a |1 10 a |[110
cab,bea,abe | Az | 52 @ 100 b 10 a 001 c 00
cab,bea,ach | 51z | 5 c 100 c 100 c 100 c 00
cab,bea, bac | 5z | 7 011 011 011 c 00
cba,cha,cba | 7z | = c |1 11 ¢ 111 ¢ |1 11 ¢ [111
Sum total 111 168 120 120 144 144 120 136 136 136 147129 111
TCI() for IC 26 216 216 Mo 2l 216 Ye 26 2t 26 716 716
~ .78 .56 .56 ~ 0.67 .67 .55 ~ .63.63.63 ~ .68.60 .51
TCI() for IAC o 56 56 o 50 56 6 56 % 5o 56 0
~ .79 .64 .64 ~ 71.71 .64 ~ .69 .69 .69 ~ .72.67 .58
~ .83 .67 .67 ~ 0.75.75 .72 ~ 75.75.75 ~ .82.75 .66
~ .84 .73.73 ~ 0.79.79 .77 ~ .79.79.79 ~ .84.79 .71

Note: This table illustrates success computations when voters N = {1, 2, 3} decide on options A = {a, b, c}

by rule rlw for w = (45%, 35%, 20%) and r € {

by 0.

I”P,TPR C ,B

13

7

re,r

}. Cases where s(-, P;) # 5(, P;) = 1 are indicated




no say in the collective decision is 1/3 and 1/2 for the TCI and AR, respectively A
tigure of, e.g., TCI3(-) = 111/216 ~ 0.51 under Borda rule shows that shareholder 3’s
voting rights clearly improve the chances to get what he or she wants. Taking deci-
sions by pairwise majority voting further raises these chances: Copeland rule is the
best from shareholder 3’s perspective (lilac highlights), no matter which preference
culture or success function is considered. By contrast, the large shareholder 1 is,
a priori, most successful if plurality rule is used. Shareholder 2’s individual success
maximizer differs for an all-or-nothing conception of success (plurality runoff) and
an average rank perspective (Borda).

We see that player-specific voting weights lead to player-specific answers to the
question of which voting rule reflects one’s personal preferences the best a priori
and that differences between the considered rules are non-negligible. The respective
gap between, say, TCI>(-) = 0.67 vs. 0.56 under IC arises even though many highly
consensual profiles enter the calculation (cf. first column of Table . If, in practice,
voting is reserved for issues without an obvious consensus, the benefit to player 2 of
requesting runoff votes will be greater than what a difference of ~0.11 suggests.

5 General Success Evaluations

The above illustration concerned one of the many conceivable distributions of voting
weights among three players. Suppose that shareholder 3 sells a 10% stake to share-
holder 2, resulting in the initial ownership structure W = (45%, 45%, 10%) of Apple.
How would the switch from w = (45%, 35%, 20%) change 2’s and 3’s prospects for
implementing their respective preferences? How is shareholder 1 affected?

Such questions could be answered by redoing the computations illustrated in Ta-
ble3|case by case. However, seemingly different weight distributions often imply an
identical mapping of preferences to outcomes. For instance, under Copeland, plural-
ity or plurality runoff rule the collective decision will always match shareholder 1’s
top choice for (51%,42%, 7%), (70%, 15%, 15%) and all other weight distributions in
which shareholder 1 commands more than 50% of the votes. The latter are — from a
voting perspective — equivalent. The previous identification of rule-specific weight
equivalence classes by Kurz et al. (2020) allows the determination of a player’s

3For general m, a dummy player d with independent preferences has a TCI;(-) = 1/m chance to
see its top choice win and must expect an outcome exactly in the middle, implying ARI;(-) = 1/2.
Random share-based dictatorship constitutes another theoretical benchmark with TCI;(-) = HW’T(’”_D
and ARI;()) = % if i has relative weight w;; e.g., TCI3(-) = 0.47 and ARI3(-) = 0.60 in the example.
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45%,35%,20%) .

"W=(45%,45%,10%)

= T

Wy W3

Figure 1: Simplex of all distributions of relative voting weights for n = 3

success for all possible distributions of voting weights: one needs to conduct the
computations behind Table 3{ only for one representative of each equivalence class.
We will here cover all 6, 7, 4 and 51 classes that exist for plurality, plurality runoff,
Copeland and Borda ruleif n = m = 3

5.1 Success for Three Players with Arbitrary Voting Weights

To present our results, we use the standard projection of the three-dimensional sim-
plex of relative voting weights into the plane. It is illustrated in Figure [1} vertices
give 100% of voting weight to the indicated player, e.g., player 1 in the bottom left
corner; the midpoint corresponds to symmetric weights of (1/3,1/3,1/3). Player 1
(2; 3) wields a plurality of votes in the shaded (blank; dotted) quadrangle.

Figures 24| respectively show all achievable ARI(-)-vectors under IC for plurality
with or without runoff and the Copeland method for m = 3 options, rounded to

4Por m = 4 options there are 6 plurality, 7 plurality runoff, 4 Copeland and 505 Borda equivalence
classes, corresponding to committees that differ structurally rather than just nominally. Having only
n < 3 relevant players may be unrealistic for big corporations and parliaments but fits many private
firms, startups, joint ventures or party alliances and government coalitions.
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Figure 2: ARI(:) for plurality rule ' and all weight distributions under IC whenn = m = 3;
ARI; = 0.72 for all players if w* = (1/3,1/3,1/3)

two decimal places Considerably more equivalence classes and associated success
levels exist under Borda rule. Figure |5 indicates the success values for player 1 by
different colors — coded from red for a dummy player (ARL(-) = 0.5) to blue for a
dictator (ARL(-) = 1). The values for player 2 or 3 correspond to player 1’s success
for the permuted distributions (w,, w1, w3) and (w3, w,, wy).

We can see that a switch from w = (45%, 35%, 20%) to W = (45%, 45%, 10%) raises
player 2’s a priori voting success under plurality and Borda rule from about 0.67
to 0.75 and 0.75 to 0.79, respectively. But expected preference satisfaction remains
constant under plurality runoff and Copeland rule. Trading a package of just 9%
would affect collective decisions only under Borda rule.

Figures [ and [7] summarize which of the considered voting rules maximize
player 1’s success, AR1(N, A, rlw) or TCL1(N, A, rlw), for any given distribution of
voting weights among three players deciding on three or four alternatives[”| Tongue

15 Analogous figures for IAC, TCI(-) or m = 4 are available from the authors upon request.

16 Again, the success-maximizing rules for voters 2 and 3 can be deduced by considering the
permuted distributions (w,, w1, w3) and (w3, w,,w;). Some focal lines or points in the figures are
manually enlarged for better visibility.
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Figure 3: ARI(") for plurality runoff rule 'R and all weight distributions under IC when
n =m = 3; ARI; = 0.75 for all players if w* = (1/3,1/3,1/3)
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Figure 4: ARI(") for Copeland rule 7 and all weight distributions under IC whenn = m = 3
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2

Figure 5: ARI;(-) for Borda rule r® and all weight distributions under IC when n = m = 3

in cheek, the figures provide a map for any self-interested member of a committee
with a say on its default voting rule, such as a shareholder in a corporation with few
co-owners. At the same time, the figures can also help others prevent foul play.

5.2 Success for an Arbitrary Number of Symmetric Players

As can be seen in Figures(p|and 7] plurality rule and Borda rule respectively maximize
the “all-or-nothing’ top choice success TCI;(-) and average-rank success AR (-) for an
equal distribution of voting weight. This observation extends to arbitrary numbers of
players or alternatives and comparisons with any anonymous voting rule. Analogous
statements apply for other success functions. Namely, we have the following general
recommendation for which voting rule r to use if voters are symmetric, i.e., all have
voting weight w; = 1/n and their preferences are statistically exchangeable a priori,
such as for IC or IAC:

Proposition 1. Consider anonymous voting rules r, symmetric voters N = {1, ..., n} whose
preferences over A = {ay,...,a,} are statistically exchangeable random orderings a priori
and a success function o® such that o%(a*, P;) = sy with 1 = s; > 55 > ... > s, = 0 whenever
P; ranks a* in k-th place. Then any player i’s a priori success E[o°(r(P), P;)] is maximized by
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Figure 6: Maximizers of player 1’s voting success for n = m = 3
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(a) ARI and IC (b) ARI and TAC
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Figure 7: Maximizers of player 1’s voting success for n = 3 and m = 4
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the scoring rule r* that selects

r*(P) € arg max Z Z Sk - )(k ‘(a)

acA G k=1

where )(f ‘(a) = 1if P; ranks a in k-th place and 0 otherwise. In particular, TCI;(-) is maximized
by plurality rule r* and ARI(-) is maximized by Borda rule r5.

Proof. Exchangeability and anonymity imply E[c®(r(P), P;)] = E[c°(r(P), P;)] for any
players i, j € N. Maximization of [E[o®(r(P), P;)] with respect to r is therefore equiva-
lent to the maximization of

Y Elo*((R), Pl =) ) Pr(P)-o*((P),P)l =) Y Pr(P)- ) sc-x, (r(P))
=1 j=1 PeP(A)" j=1 PeP(A)" k=1
(7)
= Y Pr(p) | Zsk X, r(®))] (8)
PeP(A) j=1 k=1

By definition, 7*(P) maximizes the bracketed term in equation (8) for every P € P(A)".
Hence * maximizes [E[o°(r(P), P;)]. Itremains tonote that1 =s; >s, =... =5, = 0for
all-or-nothing success function s(-) and that then 7* = *. Similarly, s, = (m—k)/(m—1)
holds for k = 1,...,m for the more gradual function §(-). Then, r* = ¥ because re-
scaling Borda scores b;(a, P) by 1/(m — 1) > 0 leaves the score maximizers and thus
the selected outcomes unchanged. n

The intuition behind Proposition [1|is straightforward: plurality rule is defined
as maximizing the number of voters who see their top choice win. In a perfectly
symmetric world, this is equivalent to maximizing the probability that a fixed voter
sees its top choice win. Similarly, Borda rule picks the option with the highest average
rank among all voters, which entails maximizing the expected rank assigned to the
outcome by any fixed voter under symmetry. Changing the order of summation in
equations (7) and (8) formalizes just this. We are unaware of previous statements of
this generalization of the Rae-Taylor theorem for binary decisions (Rae 1969; Taylor
1969). In the special case where voter preferences are independent and identically
distributed, Proposition [I| echoes Theorem 3.1 of Apesteguia et al. (2011) on the
utilitarian social optimality of r* if all s; equal the expected utility of choosing a
voter’s k-th ranked alternative.
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Importantly, even the slightest deviation from perfect symmetry can destroy
the optimality of 7’ and ? identified in Proposition [} The combinatorics behind
achieving a plurality, majority or score maximum make equal voting weights a knife-
edge case. To see this, move slightly to the northeast or northwest of the midpoint
of the simplex, e.g., in Figure |§|(d): P immediately stops being TCI;-optimal. Also
the other panels of Figures|6|and [/ attest that it is tempting but wrong to extrapolate
Proposition [I| and the intuitive advantage of plurality rule (Borda rule) in yielding
high top choice success (average rank success) to ‘nearly symmetric’ weights.

There is not even a monotonic pattern of which voting rules are optimal for
player 1 once perfect symmetry is broken. Consider Figure [f[(d) and w = (w1, (1 -
w1)/2,(1 — wy)/2) for illustration: all rules make 1 a dummy player for w; = 0
but r and ® maximize 1’s success given the correlation with players 2 and 3’s
preferences;”| 7 is the unique TCI;-maximizer for w; € (0,1/3); then <, r” and R
are success maximizing for w; = 1/3; only r* maximizes TCI; for w; € (1/3,3/7] and
wy = 1/2, while 1" is tied with 7 for w; € (3/7,1/2); again 1<, r’ and 'R are optimal
for wy € (1/2,2/3]; and finally all four rules induce TCI; = 1 for wy € (2/3,1]. A
similar back and forth can be seen in the other panels of Figures [p|and [7]

Based on these observations we should expect Proposition[If's theoretical results
to provide little to no practical guidance for shareholder voting in publicly traded
companies, parliaments, etc. unless all of the relevant stakeholders have equal voting
weights. Quite surprisingly, the findings obtained in Section|for prominent US share
distributions will offer evidence against this conjecture.

5.3 Other Evaluation Criteria

The premise motivating our investigation is that a given player i cares only about its
own success, not some greater good. Let us nonetheless comment on two additional,
normatively appealing aspects of voting rules: the weighted total of individual
success values and the extent to which voting success correlates with voting weight.

5.3.1 Aggregate Success of All Players

By-laws or rules of procedure may need to appeal also to future investors, not just
the founders or current owners of a company, and it can be unclear who will be a
large or a small shareholder in a few years’ time. Instituting a rule that implies a high

17yP and rPR are equivalent if only two players have positive weight. The rules pick the top option
for at least one of them, while ¢ and r® can yield ties involving options that are mid-ranked by both.
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average or sum total of individual success values then becomes an attractive default.
High aggregate a priori success is also desirable from the welfare perspective of a
regulator. So it is good to know that plurality (Borda) rule maximizes the sum of all
voters’ top choice (average rank) success. This is a direct corollary of Proposition
for symmetric voters but extends to any asymmetric weights if we treat each share
equally, i.e., consider the weighted sum of individual success values:

Proposition 2. Under the conditions of Proposition (1, the scoring rule r° maximizes
the w-weighted total success }.;_; w/E[o*(rlw(P), P))] for any given w. In particular,
Y.' wTCI;(") is maximized by plurality rule r", and Y."_, w;ARI,(-) is maximized by Borda
rule v? for any distribution of voting weights.

The proof follows directly from replacing }_; E[o*(r(P), P)] by }."_; w/E[0*(rlw(P), P))]
in equation (7) in the proof of Proposition (I, For Proposition 2, one may even drop
the exchangeability condition that is needed for Proposition [I}

5.3.2 Transparency

The extent to which larger shareholdings imply greater success is another aspect that
investors and authorities may care about. Voting rights are the defining feature of
common shares. Thus, differences in ownership should go with differences in how
well the respective shareholder preferences are reflected in corporate decisions.

A simple measure of how transparently a priori voting success is aligned to
voting rights is their correlation. For instance, under Borda rule, IC and m = 3,
the correlation coefficient for the weight distribution w = (45%, 35%, 20%) and the
success distribution ARI(:) = (177/216,162/216,142.5/216) in Table 3|is 0.9992. This
number is considerably higher than the respective figures for plurality and plurality
runoff (0.8030 and 0.9177); the uniform success values for Copeland are entirely
uncorrelated with the given weights.

Figure [8| shows which method maximizes the respective correlation coefficient
for all conceivable voting weight configurations among three players who decide
on three alternatives. The winner is mostly Borda rule — no matter if one considers
ARI or TCI success vectors for the IC or IAC preference distribution. An analogous
evaluation using the Kendall rank correlation coefficient gives similar results (with
Borda rule being even more dominant). The underlying reason is that the Borda
method comes with many more weight equivalence classes than our other voting
rules (cf. Kurz et al. 2020). So, weight variations are more likely to make a difference.
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Figure 8: Maximizers of correlation between voting weights and success whenn =m =3
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We also confirmed that Borda rule translates the large shareholdings in S&P 100
corporations, which we study next, into success the most transparently.

6 Application to S&P 100 Corporations

As we saw above, the individual optimality of the plurality and Borda voting rules
can break down even for marginal deviations from symmetric voting weights. We
therefore apply our success measures to a range of actual distributions of voting
weights in order to assess the practical relevance of our findings (cf. Leech 1988).
We consider the ownership structure of the companies in the S&P 100 stock index
as composed at the beginning of 2022. To achieve reasonable computation times of
~ 6 hours per firm and success index on average, we focus on m = 3 alternatives and
the ten largest shareholdings of each index constituent. The remaining shares are
treated as a homogeneous, perfectly divisible ‘ocean’ of free float[T|

Under the IC assumption, the law of large numbers induces a uniform distri-
bution of the float’s cumulative weight across the m! = 6 possible rankings. We
evaluate success in each of the resulting 6!° ~ 60 mio. distinguishable preference
configurations. The situation is more complicated under the IAC assumption: pos-
itive correlation between shareholders — both large and small — generates infinitely
many distinct configurations. So, we approximate a priori success values under IAC
in an extensive Monte Carlo simulation/["]

6.1 Data

The considered shareholder data comes from the Thomson Reuters Global Owner-
ship database as of January 19, 2022, accessed via Refinitiv Eikon. The data combines

18 As a robustness check, we alternatively ignore all but the ten largest shareholders and evaluate
their 610 possible preference profiles. Ignoring smaller shareholders is in line with |Azar et al. (2018),
who eliminated all holdings below 0.5%. Disregarding the float does not change any results for IC,
while corresponding findings for IAC become somewhat more similar to the IC findings.

YThe exchangeable preferences under IAC can be simulated by first drawing common preference
inclinations p = (p1,...,pm) uniformly from the (m! — 1)-dimensional unit simplex and then deter-
mining individual preferences via (conditionally) independent single draws from the p-multinomial
distribution (cf., e.g., [Berg 1985). We approximate TCI; (ARI;) by averaging 350 000 iterations of the
following steps: (1) draw p; (2) draw P; fori = 1,...,10; (3) shortcut draws for float shareholders by
dividing the float’s total weight in proportion to (p1,...,pm); (4) determine winner a*; (5) evaluate
s(a*, P;) (5(a*, P;)) fori =1,...,10. This takes about 4 hours/firm on a desktop computer with a 2.3 GHz
i7 CPU; complete enumeration for IC takes about 2 hours/firm (compared to 0.1 seconds for m = 2).
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Table 4: Descriptive statistics for shareholdings in the 92 included S&P 100 corporations

Percentage values for the i largest shareholder

Shareholdings i= 1 2 3 ... 10 11-...

Mean 10.76 723 538 ... 114 62.33

Mean (cumulative) 10.76 18.00 23.38 ... 37.67  100.00
Standard devation 719 124 126 ... 034 8.50
Standard devation (cumulative) 719 715 713 ... 850 0.00
Maximum 48.87 1514 911 ... 229 72.68

Maximum (cumulative) 48.87 53.38 56.65 ... 68.92 100.00
Minimum 696 452 327 ... 044 31.08

Minimum (cumulative) 696 1324 1790 ... 27.32  100.00

information from various sources, such as mandatory disclosures. It has previously
been used, e.g., by Bushee and Noe (2000), |/Azar et al. (2018)|or Backus et al. (2021).
We consider only ordinary shares with equal voting rights and exclude corporations
with dual or multi-share classes that entail different voting privileges (cf. Backus
et al. 2021). This leaves 92 constituents of the S&P 100 index in our sample”| We
consolidated the shareholdings of all BlackRock entities in analogy to |[Backus et al.
(2021) and Ben-David, Franzoni, Moussawi and Sedunov (2021).

The descriptive statistics in Table[ provide an overview of the consolidated share
distributions. The largest shareholders of the S&P 100 constituents hold ~ 7% to
almost 50% of the corporate stock with a standard deviation of 7.19% and a mean of
10.76%. The ten largest shareholders hold a cumulative stake of 37.67% on average.
The remaining holdings define the respective free float mentioned above.

For the independent preferences assumed by IC, a sixth of the float’s voting
weight can be associated with each of the six alternative rankings of m = 3 options.
Then, despite not wielding the required majority formally, the largest shareholder of
three S&P 100 firms (Oracle, T-Mobile US, Walmart) can effectively dictate collective
choices under any of our voting rules with a top choice and average rank index value
of TCl; = ARI; =1 (and TCI; = 1/3 or ARI; = 1/2 for shareholders i > 2). The three
corporations will be ignored in IC-based rule comparisons, and so we report results
for altogether 89 (92) out of 100 corporations included in the S&P 100 for IC (IAC).

2The excluded corporations are: Alphabet, Berkshire Hathaway, Charter Communications, Com-
cast, Ford Motor, Meta Platforms, Nike and United Parcel Service.
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Table 5: Success maximizers for S&P 100 shareholders

Success index Success maximizers for the i largest shareholder
and Prob. distr. r 1 2 3 4 5 6 7 8 9 10
ARI Borda 76 85 56 84 71 76 78 70 73 70
IC Copeland 2 4333 117 7 9 4 13
n =89 Plurality 1 0 0 0 0 0 0 0 O O
Pluralityrunoff | 0 0 0 2 7 6 4 10 12 6
ARI Borda 87 92 92 92 92 92 92 92 92 92
IAC Copeland 0 0 000 0 0 0 0O
n=92 Plurality 5 0 0 0 0 0 0 0 0 O
Pluralityrunoff{ 0 0 0 0 0 0 0 O 0 O
TCI Borda 0 10 7 6 8 9 8 9 9 9
IC Copeland 0 0190 1 0 0 0 0 2
n =89 Plurality 89 50 60 78 61 70 63 62 66 58
Plurality runoff | 0 29 3 5 19 10 18 18 14 20

TCI Borda 0 4 3 3 3 3 3 3 3

IAC Copeland 0 0 00 0 00 0 0O
n=292 Plurality 92 88 89 89 89 89 89 89 89 89
Pluralityrunoff 0 0 0 0 0 0 0O 0 0 O

6.2 Results

Table 5| summarizes the success maximizers for the included S&P 100 companies.
The striking message is that the theoretical conclusions of Proposition|[I|for perfectly
symmetric voting weights extend to the considered voting share distributions. These
distributions are highly asymmetric even among the largest investors. And yet,
assuming preference correlation a la IAC, Borda is the best rule for all but five of
the 920 included shareholders (gross count) if success is evaluated according to the
individual average ranking of collective choices (ARIi) Similarly, plurality rule
maximizes success in overwhelmingly many cases if a shareholder i cares only about
the probability with which it obtains its top choice (TCL).

Under IC, plurality rule maximizes the TCI; value of the largest shareholder in all
89 companies under consideration, the respective TCI, number of the second-largest
shareholder in 50 companies, the TCI; level of the third-largest in 60 and so on.
We obtain similar findings for Borda rule and the average rank index: Borda is the
ARIL (ARL, ARI;, ..., ARILp) maximizer for the respective largest (second-largest,
third-largest, . .., tenth-largest) shareholder in 76 (85, 56, ..., 70) of the included 89

ZThe five exceptions arise when the largest shareholder owns a share of w; > 20%.
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companies. These results are very unexpected given the distribution sensitivity and
the non-monotonicities observed in Section 5l for three voters.

A robust rule of thumb emerges: make a case for deciding by Borda rule if your
objective is to maximize the ARI; value, and for plurality rule if you want to maximize
TCI,. This is essentially independent of whether you have the largest, second-largest,
etc. holding in a corporation and whether the IC or IAC preference distribution is
deemed more relevant for a personal a priori assessment. The recommendation also
holds for small or infinitesimal shareholders in the ﬂoat@ and, as shown in Propo-
sition 2, Borda and plurality rule maximize the weighted total of all shareholders’
success values.

Copeland and plurality runoff rule maximize a player i’s ARI; and TCI; levels only
inafew cases. The key exceptions are ARI; numbers for the third-largest shareholders
(Copeland is optimal in 33 cases) and TCI, values for the second-largest shareholders
(plurality runoff is optimal for 29 of them) if preferences are independent.

Having such exceptions may, of course, make it worthwhile not to rely on the
above rule of thumb but to assess voting methods individually and case by case.
One can, for instance, zoom in on the success maximizers for the largest institutional
investors: Vanguard and BlackRock. Both are among the ten largest shareholders
of all examined S&P 100 companies and usually in the top three. It turns out that
the advantage of Borda (plurality) in maximizing their ARI; (TCI;) success level is
pronounced for both of them 7|

Figure @ illustrates the mean values of ARI; and TCI; for the ten largest share-
holders under the applicable voting rule. On the one hand, the figure corroborates
the above rule of thumb: the interpolated lines for Borda (plurality) lie consistently
above those of the other three voting rules when considering ARI; (TCL-)@ On the
other hand, comparing the spaces between the lines to their slopes highlights that,
non-surprisingly, the voting advantage that an investor derives from having more
shares than another tends to matter more than whether this or that rule applies.

22Positive correlation under IAC aligns the interests of any dummy players with the average
interests of the shareholders in Table 5| while all rules yield identical dummy success TCI; = 1/3 and
ARI; = 1/2 under IC. We also cross-checked the findings reported in Table[5|by repeating the analysis
with an additional shareholder 11 owning 0.1% of shares: all conclusions continued to hold.

23Exceptions arise under IC, with results for TClpjackrock Similar to those for the second largest share-
holders in Table |5, We remark that broad agreement among investors about the success implications
of different voting rules makes it unlikely that a rule switch would prompt portfolio readjustments.
This supports treating voting weights as exogenous givens.

24Using medians instead of means leads to the same inferences.
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Figure 9: Success indices averaged per shareholding rank across S&P 100 companies
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We use a linear regression model in order to quantify expected voting rule dif-
ferences and to determine their statistical significance. Since it is well-known from
the analysis of binary votes that it is not higher voting weight as such that gives an
advantage, but how this weight facilitates the formation of winning majorities (or
blocking minorities) with other voters, we opted to include proxies of shareholders’
voting power instead of the holdings themselves. We draw on values of the Penrose-
Banzhaf index (PBI) for IC and the Shapley-Shubik index (SSI) for IAC. Because
these indices were developed for binary decisions under the IC and IAC assump-
tions, they are attuned to the respective correlation pattern/”| We then estimate the
following regression model using an ordinary least squares (OLS) regression with
heteroscedasticity robust standard errors (White 1980){]

4
VotingSuccess, = g + p1Powerlndex; + Z BiVotingRules, + ¢, 9)
j=2

where VotingSuccess is the shareholder’s success index ARI; (TCI;) and VotingRules are
Copeland, Plurality and PluralityRunoff (Borda, Copeland and PluralityRunoff) indicator
variables, respectively. PowerIndex represents either shareholder i’s PBI or SSI value.
We estimate the regressions for 3 560 (3 680) voting rule-shareholder observations
consisting of the ten largest shareholders of the 89 (92) S&P 100 companies for our
four voting rules considering the IC (IAC) distribution. We present the corresponding
results in Table @ One can see that the adjusted R? values are very high. This is
expected as a shareholder’s power and success are driven by the underlying voting
rights and so both — even if power is approximated by indices that presume binary
voting — covary. The correlation is particularly high under the IC assumption but
the fit is very good for IAC too. These observations retrospectively support the
many previous investigations that employed the Penrose-Banzhaf or Shapley-Shubik
indices of binary voting power in contexts where collective choices are not from the
start simple ‘yes’-or-'no” affairs, but at some stage require a selection from multiple

candidates or motions.

2The respective power index computations assume binary decisions by shareholdersi = 1,...,10
with a 50% majority quota. Dedicated power measures for non-binary decisions (Kurz et al. 2021) are
more challenging to compute and already capture some rule effects.

26 As a robustness check, we alternatively control for the holding percentage of shareholder i or the
ownership concentration among shareholders j # i measured by the Herfindahl index (cf. [Demsetz
and Lehn 1985 and |Ajinkya, Bhojraj and Sengupta 2005). The model then loses some explanatory
power but results are qualitatively unchanged. Including shareholder rank fixed effects does not alter
our conclusions either, nor does using tobit regressions for censored dependent variables.
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Table 6: Multivariate regression results

Dependent variable: Success index for given preference distribution
ARI TCI
IC IAC IC IAC
@ ) ®) )
Variable Coefficient Coefficient Coefficient Coefficient
PBI 0.4950*** 0.6166***
SSI 0.3249*** 0.4195%**
Borda -0.0108*** -0.0180***
Copeland -0.0068*** -0.0080*** -0.0126%** -0.0154***
Plurality -0.0124%** -0.0130***
PluralityRunoff -0.0071%** -0.0098*** -0.0065*** -0.0078***
Intercept 0.5078*** 0.6528*** 0.3356*** 0.5210***
Adjusted R? 0.9924 0.8644 0.9885 0.8797
n 3560 3680 3560 3680

Note: This table presents the coefficients and significance levels of our four OLS regres-
sions with heteroscedasticity robust standard errors (White 1980). The superscripts *,
** and *** represent significance levels of 10%, 5% and 1% (two-tailed t-tests), respec-
tively. We estimate the following regression models: VotingSuccess;, = ag + p1PowerIndex; +

Z?:z BjVotingRules, + ¢;, where VotingRules are Copeland, Plurality or PluralityRunoff indi-
cators in columns (1) and (2) and Borda, Copeland or PluralityRunoff indicators in columns
(3) and (4). The dependent variable VotingSuccess is the shareholder’s success index ARI
in columns (1) and (2) and TCI in columns (3) and (4), respectively. The success indices
are calculated assuming IC in columns (1) and (3) and IAC in columns (2) and (4) for the
probability distribution over preference profiles. Consequently, the Penrose-Banzhaf index
(PBI) represents the Powerlndex in columns (1) and (3) the Shapley-Shubik index (5SI) is
used in columns (2) and (4).

The results in columns (1) and (2) of Table[f|confirm the inferences we drew from
Table 5|and Figure 9} individual voting success as measured by ARI is significantly
lower when the voting rules Copeland, Plurality or PluralityRunoff are applied instead
of Borda rule, which is the baseline in these regressions. Similarly, columns (3) and
(4) show significantly lower success levels for Borda, Copeland and PluralityRunoff
in comparison to the benchmark plurality rule considering TCI. All differences are
statistically significant at the 1% level.

Using the optimal voting rules on average leads to 1 to 3% higher success rates.
This may not seem a big difference but in a majority of cases the tenth largest share-
holders (with mean holdings of 1.14%) would benefit more from switching from the
worst to the best voting rule than from switching their holdings with the respective
seventh largest shareholders (with mean holdings of 1.78%). Considering only IAC,
the effects are yet more pronounced: the tenth largest shareholders in more than 80%
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(50%) of the firms would benefit more from a rule change than from swapping their
holdings with those of the sixth (fifth) largest shareholders”’| Recall also that a priori
figures include many preference configurations with broad agreement among voters.
If, a posteriori, one conditions on situations where disagreement has motivated an
otherwise unnecessary call for a vote, the success gap between the individually best
vs. worst rule grows. The simulated rule differences then serve as lower bounds.

7 Concluding Remarks

The key takeaway from this investigation is that the adopted voting procedure mat-
ters from an a priori and day-to-day perspective —not only in selected textbook exam-
ples or under rare historical circumstances (cf. Leininger 1993, Tabarrok and Spector
1999, Maskin and Sen 2016/ but also Darmann and Klamler 2023|or|Lachat and Laslier
2024). Voting rules entail different prospects of seeing one’s most preferred option
win and they make a difference to where the expected collective outcome lies in
one’s ranking of all options. This can be quantified and predicted for the a priori
distribution of preferences that one considers relevant. Corresponding evaluations
may inform the design of by-laws, statutes and other governance instruments.

Of course, our findings have practical and theoretical limitations. First, a wide
range of voting rules exist, and we have focused on just four. For instance, after a
plurality vote without a majority winner, one may delete only the alternative with
the lowest support and vote again; a chairperson may put just specific pairwise com-
parisons on the agenda; and there are many different ways to translate candidates’
positions in individual preference rankings into scores. The rules investigated here
include particularly prominent representatives from the three main classes of single-
winner methods (Condorcet methods, scoring rules and runoff rules), but there are
ample opportunities for follow-up work. Borda rule is probably the least frequently
used of the voting procedures that we have looked at. In case of symmetric voters, it
operationalizes a straightforward ideal of justice (see Apesteguia et al. 2011) and has
particularly compelling axiomatic properties@ Ambuehl and Bernheim (2024)/doc-

27Considering Apple Inc., for instance, the ARIjp-gain of 0.6619—-0.6497 = 0.0121 from replacing
plurality rule by Borda rule exceeds the difference between ARIy = 0.6497 and ARI5 = 0.6616 under
plurality rule, which reflect holdings of 0.66% vs. 2.07%. An acquisition of 2.07%—0.66% = 1.41% of
Apple stock would have cost around USD 38 billion in Jan. 2022.

ZBorda rule is closely connected to both May’s and Arrow’s classical axioms of rational collective
choice. As shown by Maskin (2025), the rule is unique in satisfying anonymity, neutrality, respon-
siveness, unrestricted domain, a Pareto ranking condition and modified independence of irrelevant
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ument that Borda winners receive better ex post support than plurality or pairwise
winners in decision experiments. Our findings that Borda rule yields higher indi-
vidual ranks also for practically relevant asymmetry and induces higher correlation
between voting rights and success than the competing rules strengthens the case for
using it more.

Second, we are aware that very many votes by boards or general assemblies are
‘yes’-or-'no’ decisions with little dissent. The existing sets of options are often re-
duced to singletons behind the scenes without formal votes long before an official
meeting. However, decision making can involve disagreement. Then it is advanta-
geous to know how different procedures to resolve it translate into different success
expectations. In addition, the non-public processes that lead to a consensus proposal
may implicitly involve multiple pairwise comparisons, a runoff-like focus on the two
options with the most initial support or the accumulation of scores. Understanding
the comparative merits of these approaches can be as beneficial in their informal
application as in explicit votes.

Third, we have focused on sincere voting. This is a restrictive theoretical as-
sumption despite rather scant empirical support for its most compelling alternative:
strategic voting. The latter comes with a pervasive non-uniqueness of the resulting
voting outcomes and entails limitations of its own. We present a detailed inves-
tigation of strategic voting equilibria in Appendix [Bl It shows that many of the
weight-specific maximizers identified in Section |5/ continue to maximize success if
one selects from non-singleton sets of equilibria according to their Kemeny distance
to truthful voting.

Despite these caveats, the reported investigation highlights that taking decisions
by vote is a lot less trivial than it may appear. The combinatorial complexity of
weighted voting is enormous. Analysis of collective decision rules is therefore la-
borious already for two alternatives’| The computational burden increases steeply
when three or more options compete but corresponding a priori assessments are still
worthwhile: they can make voting more successful.

alternatives. This comes on top of the desirable consistency properties that distinguish Borda rule
from, e.g., pairwise voting (cf.|Young 1974).

»See, e.g., Kurz and Napel (2016) and Kober and Weltge (2021) on an open computational problem
created by the qualified majority rule that is used in the Council of the European Union.
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Appendices

Appendix A: Robustness to Random Tie Breaking

Lexicographic tie breaking assumes some fixed ordering a; <; a4, <; ... <p a, of
the alternatives such that if options a;,, . . ., a;, receive the same plurality score (Borda
score, etc.) at a given preference profile P then a; with i* = minf{iy, ..., i} is selected
as the unique winner r{w(P).

To demonstrate that the tie-breaking assumption is innocuous for our analysis,
consider the set-valued version of a given voting rule r like r* (%, etc.). This maps each
preference profile P to the non-empty set 7lw(P) = A* C A of all alternatives that
have the highest plurality score (Borda score, etc.). In contrast to our point-valued
baseline, the respective set-valued version of r” (1%, etc.) is neutral, i.e., 7 = 7 (7%,
etc.) satisfies #(p(P)) = p(#(P)) for any permutation p: A — A and P € P(A)".

Now take an arbitrary alternative-based tie breaking method. It can be described
by a family {fp}pera.» Of probability distributions that assign winning probabilities
Bg(a) to all a € B with ),z Bs(a) = 1 for any set of tied alternatives B. We will write
{Bs} for short. Lexicographic tie breaking { };X'} amounts to ﬁ}fx'(a) = 1 iff a is the
lexicographically minimal element of B. A popular alternative is uniform random tie
breaking { gm'} where ﬁgm' (a) = 1/|B| for any a € B. A given method {Bz} might also
apply uniform tie breaking if |B| = 2, lexicographic tie breaking if |B| = 3, prescribe
particular B-specific probabilities if |B| = 4, etc. All we requireis that preferences affect
the outcome via the baseline voting rule while tie break probabilities are independent
of P

For a given success function o: A X P(A) — R let ¢’s extension to {Bp}-tie breaking
6: 24 X P(A) — R be defined by

6(B,P) = ) ps(a)o(a’, P). (10)
a'eB
This equals the expectation of o(a*, P;) under the pertinent tie break probabilities.
With these definitions we have

Proposition 3. Consider voters N = {1, ..., n} with voting weights w = (wy, . .., w,) whose
preferences over A = {ay,...,a,} are drawn from a probability distribution on P(A)" that
satisfies Pr(P) = Pr(p(P)) for any permutation p: A — A. Let f|w be the neutral set-valued

39Making tie break probabilities a function of the preferences of, e.g., the committee’s chairperson
or the largest shareholder would shift the distribution of a priori success in the expected direction.
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version of rlw and & be the extension of success function o to {Bg}-tie breaking. Then
E[o(rlw(P), P)] = E[6(Flw(P), P;)].

In particular, player i’s top choice or average rank success under lexicographic tie breaking,
E[o(rlw(P), P;)], and the respective success under any other alternative-based tie breaking
method, E[6(P|lw(P), P;)], are identical.

Proof. For any non-empty subset B C A of alternatives, denote the set of preference
profiles that yield a tie between the alternatives in B by

Py = {P e P(A)" : Hiw(P) = B}, (11)
Also denote the permutations of A that only switch elements of B C A by
S'={p:A>A:[a¢B=pa=al. (12)

If P € Pg, then neutrality of 7lw implies that also P’ = p(P) € P forany p € SP. Hence
Pp can be partitioned into k(B) = Psl/py subsets Pg1, ..., Prip) that each contain |B|!
profiles which differ only by permutations of B’s elements. For any such partition
element P ; let us fix a ‘representative’ profile P?/ € SDB ; that ranks B’s elements
B ={a,,...,a,,) from player i's perspective by a,, P*/a,,P." ... P{"a, .

Player i’s success 6(fw(P), P;) for P € Pp ; equals

&(B, P)) = 6(B, PY) = By(a,)0(ar,, P.) + Bo(ar,)0(@ry, PY) + . ..+ ()0 (an,, PY7) (13)
if P = P?J. For the related profile P’ € Pp; where, e.g., a,, and 4,, are permuted, i’s
success evaluates to

6(B, P;) = Bg(ay)o(a,,, P;) + Bs(ar)o(ar,, P)) + ... + Ba(a, )o(ar,, P;)
= Ba(ar,)0(@r,, P17 + Bo(@r,)0(ar,, P27) + ..+ Ba(an, )o(an,, P2)  (14)
and, more generally, we have 6(B, P) = Y.,z Bs(@)o(p ' (a), Pf’j ) if P’ = p(PB)).
This implies

Z Pr(P)6(7lw(P), P;) = Z Pr(p(P%)) Z Bs(@)o(p"(a), P*)

PePp peSB aeB

= Pr(P™) )" (@) ) o(p™ (@), P
aeB peSE

= Pr(P") )" s (a)Z] Bro@ P (15)
a€B aeB

|B| PP

= Pr(P?/) ).

;; Ik
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The second equality exploits that Pr(P) = Pr(p(P)) for any permutation p: A — A
and changes the order of summation. The third equality uses that, as we go over
all permutations of B’s elements supposing a given a prevails in the tie break, a is
ranked in the location thatd = p‘l(a) has in reference ranking Pf’j exactly |B|!/|B| times
for each @ € B. The final equality just replaces the expectation of a constant by this
constant and renames 4 to a.
We therefore have
E[(w(P),P)l= ) Pr(P)o(fiw(P),P,)
PeP(A)"
k(B)

- Z Z Z Pr(P)6 (7w (P), P;) (16)

BCA j=1 PePy;

¥ Y. P 1 ot
= Pr(PP) ) —o(a, PY)
BCA j=1 aeB |B|

independently of the specific family {8z} of tie break probabilities. A priori success
under tie breaking method {fz} hence equals a priori success under lexicographic tie
breaking { };X'}, which is [E[o(r|w(P), P;)]. [ ]
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Appendix B: Robustness to Strategic Voting

The main analysis has assumed voters to express their preferences without strate-
gic misrepresentation. From a theoretical point of view, this is restrictive: unless
some voter is a dictator, the preference profiles for which sincere voting is a Nash
equilibrium are a strict subset of preference domain P(A)" (cf. Gibbard 1973| and
Satterthwaite 1975) ]

Strategic voting is arguably less problematic in practice than in theory. It requires
information about other voters” preferences that is often unavailable or difficult to
obtain. Manipulation attempts can have negative reputation effects; they may fail or
even backfire. It can also be computationally expensive for a voter to evaluate which
outcomes are achievable through which preference misrepresentation. This holds
already if everyone else votes sincerelyf] and further complexity is added if, poten-
tially, other voters misrepresent their preferences too. The subjects in experiments
by [Van der Straeten et al. (2010) voted strategically only if the required computa-
tions were elementary. Other authors made similar observations (see, e.g.,[Kube and
Puppe 2009, Pons and Tricaud 2018, |Abeler, Nosenzo and Raymond 2019 or Baujard
and Lebon 2022). Even from a theory perspective it is not clear if the assumptions for
a particular strategic voting equilibrium are less restrictive than for sincere voting:
players must be aware of the possibility to manipulate; their costs of exercising this
option must be small; and they must somehow come to correctly anticipate their
adversaries’ strategies even when there are many alternative equilibria.

It is nonetheless worthwhile to assess the robustness of our success compar-
isons with respect to strategic voting. The key difficulty in doing this is non-
uniqueness of equilibrium. If, for instance, our stylized shareholders with weights
w = (45%, 35%,20%) choose between candidates A = {a,b, c} and have sincere pref-
erences P = (acb, bca, cba), there exist 40 Nash equilibria in pure strategies under rP
and 1R, 39 under ¢ and 14 under rB If we eliminate weakly dominated strategies

31For instance, in Table s example with w = (45%, 35%, 20%), at least one voter has an incentive
to misreport their preference for 36 (24, 24, 72) out of the 216 preference profiles for r* (R, r, ).

32Weighted votes using r® and 7R are NP-hard to manipulate for three or more alternatives, r* for
at least four alternatives. The manipulation problem has polynomial complexity for any number of
alternatives only for *. See the survey by |Conitzer and Walsh (2016).

3The numbers refer to a normal-form game with strategy sets S; = {ab, ..., cba} in which each
player i € N has complete information about r and P. For instance, strategy s; = cab by voter 1 in
a game where P; = acb means that 1 acts like a sincere voter with preferences cab: under PR 1 first
votes for c and then for c (a) if there is a runoff (not) involving option c. This would, e.g., be better for
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Figure A-1: Distribution of the number of Nash equilibria in undominated pure strategies
for w = (45%, 35%, 20%), m = 3 and P € P(A)"

(see Farquharson 1969), there are still 16, 8, 3 and 6 equilibria to choose from. Fig-

ure reports the distribution of the numbers of corresponding equilibria across
the (3!)® = 216 preference profiles P. For most P, there are many Nash equilibria to
select from as a theorist — and to coordinate between as actual voters. Success under
strategic voting is highly contingent on everyone forming correct beliefs about the
behavior of everybody else.

This holds for weight distributions other than w = (45%, 35%,20%) too. We
have computed the sets of pure-strategy Nash equilibria for all profiles P for n = 3

1 than the sincere strategy s] = acb if 2 and 3 play s, = bea and s3 = cba. We disregard mixed-strategy
equilibria because they have weak foundations and require an extension of P to lotteries.
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players, m = 3 options and all non-dictatorial weight equivalence classes of 1, ¥R,

¢ and r®. We checked in each case if (i) sincere voting is a Nash equilibrium or if
(ii) the winning alternative is the same as under sincere voting in some equilibrium
involving undominated strategies. The results are summarized at the end of this
Appendix in Tables to The share of profiles P in which the sincere voting
outcome r|w(P), and hence success o(r|lw(P), P;), are in sense (i) or (ii) consistent with
strategic voters often exceeds 90%. It falls below 80% only for what essentially are
2-player tie-breaking games. Hence, the conclusions from the analysis of sincere
voting are unlikely to be far off.

This can be made more precise by, for instance, adopting a cost of lying-based
selection criterion and then evaluating individual success in the corresponding equi-
librium outcomes. Specifically, among all strategic voting equilibria, let us select
those that require the lowest number of pairwise preference misrepresentations, i.e.,
we identify the equilibrium strategy profile s* € P(A)" with minimal Kemeny dis-
tance to the sincere profile s° = P. Then we compute player i’s success o(r|lw(s*), P;) at
P and obtain the respective a priori success TCI’(-) and ARI}(-) under strategic voting
by taking expectations with respect to P/

Figureshows the corresponding maximizers of TCI}(-) and ARI; (-) for strategic
voters under the IC and IAC benchmark distributions for n = m = 3 in direct analogy
to the results for sincere voters in Figure[] There are visible differences. However, in
most cases, at least one of the previously success-maximizing rules is still a success
maximizer. The results for strategic voting thus help to select between rules that
promise equal a priori success under sincere voting. Exceptions to this are (i) a
few areas where 1 is the maximizer under sincere voting but now r"® maximizes
player 1’s success, or vice versa, and (ii) some cases where r” is the maximizer under
sincere voting but r® under strategic voting if w; € (max{w,, w3}, 50%). It is possible
that, e.g., TCI;(-) = ARI;(-) = 1 for all considered rules although w, € (50%, 66.67%);
cf. the extension of the dark blue area in the bottom left corners of the simplex.

As a complementing robustness check, we considered voting under uncertainty
(see, e.g., Majumdar and Sen 2004) and verified if a sincere vote would maximize
the expected utility of a voter with u;(a) = 5(a, P;) who — lacking better information —

3We indicate each equivalence class by an integer weight distribution with minimum sum. Our
example w = (45%, 35%,20%) is equivalent to w’ = [3,2,2] under ¥, to w’ = [2,2,1] under %, to
w’ = [1,1,1] under r© and to w’ = [5,4,2] under r® (cf. Kurz et al. 2020).

3°1f several equilibrium strategy profiles s* minimize the Kemeny distance to P, we pick at random
and evaluate the expectation of o(rlw(s*), P;). For combinations of rlw and P where no pure strategy
equilibrium exists, we take every player’s success to be the same as under sincere voting.
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Figure A-2: Maximizers of ARI} and TCI; in strategic voting equilibria with minimal Ke-
meny distance to Pwhenn =m =3
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assumes that preferences of the others are independent, distributed uniformly and
expressed truthfullyP| We checked for each voter i with any fixed preferences P; if,
writing P_; = (Py, ..., Pi-1, Pis1, ..., Py),

Z Pr(P_;)-3(rlw(P;, P_;), P;) > Z Pr(P_))-5(rlw(P;, P_;),P;) VP, # P;. (17)

P_eP(A)r! P_eP(A)r!

This inequality happens to hold for all voters i and preferences P; in all plurality and
plurality runoff equivalence classes when n = m = 3. It is also satisfied for 42 out of
the 51 Borda equivalence classes and for 3 out of the 4 Copeland classes, where the
remaining 9 and 1 represent non-generic distributions (i.e., locally isolated points or
lines in the simplex)@ In other words: sincere voting is typically the best strategy
for a voter who applies the principle of insufficient reason to the unknown actions
of other players. If we take a virtual walk through the simplex in Figure (1| and
enumerate all (1500 + 2)!/(1500! - 2!) = 1127251 games with non-negative integer
voting weights w = (w;, w,, w3) such that w; + w, + ws = 1500, the proportion of
games where sincere voting is optimal in this sense — i.e., strategy s; = P; satisfies
inequality for all i and P; — evaluates to either ~ 99% or 100% under #*, ¥R, r©
and r® for both m = 3 or 4 alternatives.

%This is a special case of the model by Majumdar and Sen (2004). Knightian preference uncertainty
was earlier considered by Moulin (1981).

%For m = 4 options, deviating from truthful voting does not pay in 3 of the 6 plurality classes, 4 of
the 7 plurality runoff classes, 3 of the 4 Copeland classes and 354 of the 505 Borda classes.
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Table A-1: Number and properties of undominated Nash equilibria under plurality rule

. Share of P | Share of P s.t.
s # different . .
p Distribution of # NE s.t. sincere sincere
rw NE outcomes .. i
for P € P(A)" for P € P(A)" voting isa | outcome is a
NE NE outcome
1 2 3
- 192/216 192/216
[LLO0] | . 2006 1 0 1089 ~ 0.89
ﬂ
- 180/216 180/216
L1 . N 178 1 38 | 0 ~0.83 ~0.83
1
122 192/216 196/216
[211] | . N 197119 | 0 ~ 0.89 ~ 091
p 1
- l 180/216 188/216
[221] | . 148 | 68 | 0 ~0.83 ~ 0.87
1.,
- 180/216 204/216
[322] | - 132 84 | 0 ~ 0.83 ~ 0.94
1

Note: This table reports the number and properties of Nash equilibria (NE) in undominated pure
strategies for all five non-dictatorial * equivalence classes for n = m = 3 and all P € P(A)>.
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Table A-2: Number and properties of undom. Nash equilibria under plurality runoff rule

) Share of P | Share of P s.t.
.. ) # different ) )
PR Distribution of # NE s.t. sincere sincere
"N w NE outcomes .. ]
for P € P(A)" for P € P(A)" voting isa | outcomeis a
NE NE outcome
1 2 3
. 192/216 192/216
(1101 | - 2000610 1 089 ~ 0.89
I
. 192/216 192/216
n | 196 | 20 | 0 ~ 0.89 ~ 0.89
ZZ rl-‘_‘_IW n Hw 1
. 198/216 202/216
211 | 194 1 22 10 ~0.92 ~ 0.94
ZEOHHHQ I ‘HGH
. 192/216 192/216
221] | - 186 | 30 | 0 ~ 0.89 ~ 0.89
nis
. 196/216 196/216
3211 | - N 20808 1 01 o001 ~ 091
. 192/216 196/216
322 | - 185 | 31 | 0 ~ 0.89 ~ 091
ZZOHHHDHH oo

Note: This table reports the number and properties of Nash equilibria (NE) in undominated pure
strategies for all six non-dictatorial " equivalence classes for n = m = 3 and all P € P(A)>.




Table A-3: Number and properties of undominated Nash equilibria under Copeland rule

. Share of P | Share of P s.t.
s # different . .
c Distribution of # NE s.t. sincere sincere
r-lw NE outcomes .. i
for P € P(A)" for P € P(A)" voting isa | outcome is a
NE NE outcome
1 2 3
w 132/216 156/216
[LLO0] | . N 168 | 0 | 0 ~ 0.61 ~0.72
22;‘ He aﬂ H ﬂaz m 5 "
Iii 192/216 204/216
L1 | . 178 1 38 | 0 ~ 0.89 ~ 0.94
U
- 167/216 210/216
[211] | - 1451 67 1 0 ~ 0.77 ~ 0.97

Note: This table reports the number and properties of Nash equilibria (NE) in undominated pure
strategies for all three non-dictatorial 7* equivalence classes for n = m = 3 and all possible preference
configurations P € P(A)>. The outcome distribution does not sum up to 216 for w = [1,1, 0] because
there is no pure NE for 48 profiles of sincere preferences.
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Table A-4: Number and properties of undom. Nash equilibria under Borda rule

B Average # different Share of P s.t. sincere Share of P s.t. sincere
riw #NE NE outcomes for voting is a NE outcome is a NE outcome
P € P(A)" &
2 3

[1,1,0] 13.50 168 0 0 132/216 ~ 0.61 156/216 ~ 0.72
[1,1,1] 11.96 69 141 6 165/216 =~ 0.76 216/216 = 1

[2,1,0] 19.83 192 0 0 162/216 ~ 0.75 186/216 ~ 0.86
[2,11] 7.75 171 45 0 176/216 ~ 0.81 208/216 ~ 0.96
[2,2,1] 8.60 131 71 6 144/216 ~ 0.67 198/216 =~ 0.92
[3,1,1] 13.72 204 12 0 178/216 ~ 0.82 208/216 ~ 0.96
[3,2,0] 18.00 144 0 0 108/216 ~ 0.50 144/216 =~ 0.67
[3,21] 9.09 169 47 0 161/216 =~ 0.75 208/216 ~ 0.96
[4,1,1] 9.22 216 0 0 201/216 = 0.93 213/216 = 0.99
[3,2,2] 9.96 139 75 2 169/216 ~ 0.78 204/216 ~ 0.94
[3,31] 4.06 156 12 0 132/216 = 0.61 168/216 ~ 0.78
[4,2,1] 8.54 194 18 0 168/216 ~ 0.78 203/216 ~ 0.94
[3,3,2] 12.53 66 138 12 156/216 ~ 0.72 216/216 = 1

[4,3,1] 10.06 179 35 0 138/216 ~ 0.64 196/216 ~ 0.91
[52,1] 9.72 212 0 0 174/216 ~ 0.81 202/216 ~ 0.94
[4,3,2] 7.38 147 65 0 155/216 ~ 0.72 201/216 ~ 0.93
[5,2,2] 12.06 180 36 0 174/216 ~ 0.81 216/216 =1

[53,1] 11.50 200 16 0 150/216 ~ 0.69 198/216 ~ 0.92
[4,3,3] 13.56 66 138 12 174/216 ~ 0.81 216/216 = 1

[541] 7.41 174 22 0 130/216 ~ 0.60 180/216 ~ 0.83
[6,3,1] 4.50 192 0 0 162/216 =~ 0.75 186/216 ~ 0.86
[5,3,3] 6.56 132 84 0 168/216 ~ 0.78 210/216 ~ 0.97
[54,2] 12.06 126 90 0 144/216 ~ 0.67 207/216 ~ 0.96
[6,4,1] 7.56 186 10 0 123/216 = 0.57 176/216 =~ 0.81
[7,2,2] 15.50 216 0 0 186/216 ~ 0.86 210/216 ~ 0.97
[5,4,3] 12.24 100 110 6 159/216 = 0.74 210/216 = 0.97
[7,4,1] 7.78 196 0 0 144/216 ~ 0.67 182/216 ~ 0.84
[6,5,2] 10.07 156 51 0 138/216 ~ 0.64 195/216 ~ 0.90
[7,51] 6.82 163 9 0 114/216 ~ 0.53 160/216 ~ 0.74
[6,5,3] 12.06 126 90 0 144/216 ~ 0.67 204/216 ~ 0.94
[7,5,2] 10.60 170 46 0 145/216 ~ 0.67 203/216 ~ 0.94
[8,5,1] 7.75 172 0 0 117/216 ~ 0.54 161/216 =~ 0.75
[6,54] 12.58 76 130 10 165/216 ~ 0.76 214/216 ~ 0.99
[7,5,3] 9.21 132 84 0 156/216 =~ 0.72 208/216 ~ 0.96
[7,6,2] 6.00 163 17 0 132/216 ~ 0.61 174/216 =~ 0.81
[8,5,2] 10.94 186 30 0 156/216 ~ 0.72 207/216 ~ 0.96
[7,54] 6.08 162 42 0 165/216 ~ 0.76 197/216 = 0.91
[7,6,4] 12.29 93 116 7 150/216 ~ 0.69 212/216 ~ 0.98
[8,6,3] 12.06 126 90 0 144/216 ~ 0.67 210/216 ~ 0.97
[9,6,2] 9.83 192 24 0 138/216 ~ 0.64 198/216 ~ 0.92
[8,7,3] 8.18 151 48 0 138/216 ~ 0.64 189/216 ~ 0.88
[8,6,5] 9.35 133 74 5 168/216 ~ 0.78 204/216 ~ 0.94
[10,7,2] 9.13 187 21 0 129/216 ~ 0.60 188/216 ~ 0.87
[11,7,2] 10.17 196 12 0 132/216 =~ 0.61 187/216 ~ 0.87
[9,7,5] 8.10 149 55 0 153/216 = 0.71 193/216 =~ 0.89
[10,8,3] 10.06 158 54 0 138/216 ~ 0.64 198/216 ~ 0.92
[11,8,2] 8.42 174 18 0 120/216 =~ 0.56 174/216 ~ 0.81
[11,9,3] 7.94 168 24 0 132/216 ~ 0.61 180/216 ~ 0.83
[13,8,2] 10.50 192 0 0 126/216 ~ 0.58 174/216 ~ 0.81
[12,9,7] 4.83 180 12 0 162/216 ~ 0.75 186/216 ~ 0.86

Note: This table reports the number and properties of Nash equilibria (NE) in undominated pure
strategies for all 50 non-dictatorial r® equivalence classes for n = m = 3 and all P € P(A)°. If the
outcome distribution does not sum up to 216, there are some P for which no pure NE exists.
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