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Abstract

Collective decisions on more than two alternatives can vary widely in the adopted voting
rule. This affects how closely collective choices reflect the preferences of a given individual.
We ask if a specific voter is better off using plurality voting, plurality with a runoff vote,
pairwise majority voting or the Borda scoring method. A partial answer is that if all voting
weights are equal, then plurality rule maximizes the probability of obtaining one’s individual
top choice and Borda rule maximizes the voter-specific average ranking of the outcome. This
result generalizes to asymmetric weights in aggregate terms but not from a single voter’s
point of view. We identify the individually most advantageous rule for any given weight
distribution among three generic voters and also for the ten largest shareholders in S&P 100
corporations. Recommendations for the latter coincide in unexpectedly many cases with
the analytical benchmark for equal weights. So although heterogeneity calls for caution in
theory, the respective governance interests of investors with unequal holdings align well in
practice. We also find that the Borda rule translates voting weights into voting success the
most transparently and that traditional power indices for binary voting games approximate
success in weighted committees well.

Keywords: collective decisions · shareholder voting · weighted committee games · voting
procedures · voting power · voting success
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1 Introduction

Many important decisions are taken by vote not just in politics but also in business.
This includes elections of directors or chief executives, resolutions on important
acquisitions, the selection of an auditor or facility location, etc. When such decisions
involve more than two options, the adopted voting rule can make a big difference.
This paper therefore addresses the following research question: Which rule reflects
the preferences of a given individual the best?

Even seasoned committee chairs can be surprised by how widely collective
choices vary in the adopted voting method. For illustration, consider three share-
holders who hold 45%, 35% and 20% of corporate votes, respectively.1 These might
be exercised directly in an annual meeting or indirectly by controlling 5, 4 and 2
positions on the board of directors. Let the shareholders hold different views of five
CEO candidates, labeled a, b, c, d and e. For instance, the first (largest) shareholder
ranks the candidates a ≻ d ≻ e ≻ c ≻ b in strictly decreasing order. The second
shareholder’s preferences are b ≻ c ≻ d ≻ e ≻ a and the third one’s c ≻ e ≻ d ≻ b ≻ a.

A simple method to resolve their disagreement is a plurality vote: everybody
indicates their favorite candidate, and the one with the most votes wins. Then a
beats its competitors by 45% : 35% : 20% : 0% : 0% in the shareholder meeting or 5 :
4 : 2 : 0 : 0 in a board vote, assuming that preferences are expressed sincerely without
strategic misrepresentation. However, a is ranked last by two of the shareholders.
Furthermore, a plurality that is not a majority is legally insufficient in many settings
(cf., e.g., §216(2) of Delaware General Corporation Law; or §44 of Robert’s Rules of
Order). So some board member may propose a runoff vote between the plurality
leaders a and b. If the suggestion is taken up, b wins by 6 : 5 (or, analogously,
55% : 45% in a shareholder meeting). Pairwise comparisons might also be extended
beyond a and b. In a round-robin tournament between all candidates, c would beat
b by 7 : 4 and also win against a, d and e. This would make c the new CEO. The
directors could alternatively translate their preference rankings into scores for the
candidates – ascribing, say, 0 points to their lowest-ranked candidate, 1 to their
respective second-lowest-ranked candidate and so forth – and hire the top scorer.
This method is commonly associated with the French scientist Jean-Charles de Borda
(1733–1799) and, in our example situation, candidate d would obtain a total ‘Borda

1This is an artificial example, but identical outcomes would result for some real share distri-
butions – e.g., the Eurofighter Fighter Aircraft GmbH (Airbus 46%; BAE Systems 33%; Leonardo 21%)
or, with suitable tie breaking, the early Apple Inc. (S. Jobs 45%; S. Wozniak 45%; R. Wayne 10%).
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score’ of 5 · 3 + 4 · 2 + 2 · 2 = 27 from the board. This exceeds scores of 20, 18, 25 and
20 for a, b, c and e – so d wins. Or directors could each approve as many candidates
as they like and pick the one with the highest approval. The first shareholder might
then approve a, d and e from top down; the second only b and c; the third c and e.
This yields a top 5 + 2 = 7 approval for e versus only 5, 4, 6 and 5 for a, b, c and d.

We can see that every candidate is a winner: it all depends on the voting rule.
Having a say on the voting rule can hence be very valuable for a self-interested voter.
However, neither a regular member nor the chairperson of a board or committee can
pick a voting rule as he or she pleases, since methods for taking collective decisions
are typically fixed a priori. They are either determined in laws, charters, by-laws or
statutes; or there are institutional defaults with deviations requiring a justification.2

It is important, therefore, to study the implications of adopting one voting rule
rather than another from an a priori perspective: Can we identify any general
(dis)advantage of using, say, plurality rule vs. pairwise voting when an individ-
ual’s objective is to elect his or her personal favorite with maximal likelihood? What
if he or she wants to induce choices with a high subjective rank on average? Answer-
ing these questions can help identify preferable voting rules not just for corporate
boards or shareholder meetings but also political committees, party conventions,
electoral colleges, etc.

We consider a collective decision-making body, generically referred to as a ‘com-
mittee’, and evaluate the individual a priori success of all members when either
plurality voting, plurality with a runoff vote, pairwise majority voting or the Borda
scoring method is invoked to aggregate their preferences.3 We are especially inter-
ested in cases where the relevant players wield asymmetric voting weights because
these arise in many real-world settings: unequal weights can not only reflect un-
equal shareholdings but also votes controlled by parties, coalitions or alliances in
parliaments or associations, regional assemblies, polarized electorates, etc.

We build our analysis on the framework of weighted committee games developed
by Kurz, Mayer and Napel (2020) and define two measures of a priori voting success:
the top choice index represents the probability that one’s most preferred option is se-

2Implicit forms of voting are common and have defaults, too: leaders may tacitly adopt the major-
ity view in their team to secure their position (cf. Leeson 2007); scores that independent interviewers
assign to applicants are totaled similar to Borda rule; or competing engineering proposals are dropped
successively according to which one is favored by the fewest project members.

3The rules are prototypical instances of a Condorcet method, a runoff rule and scoring rules (e.g.,
Felsenthal and Nurmi 2018). Approval voting needs a different model of preferences and is left aside.
We focus on sincere voters but also report success maximizers for strategic players (see Appendix B).
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lected; the average rank index captures the expected position of the selected option in
one’s personal ranking. We complement either index by probabilistic assumptions
on preferences. There, we focus on distributions that are familiar from traditional
measures of voting power for binary ‘yes’-or-‘no’ decisions, namely the indepen-
dence assumption of the Penrose-Banzhaf index (Penrose 1946; Banzhaf 1965) versus
positive preference correlation as captured by the Shapley-Shubik index (Shapley
and Shubik 1954).4 The success indices can identify winners and losers of voting rule
changes and quantify the respective gains or losses. They are useful for improving
default governance rules and for addressing concern that – for given voting weights –
a particular method (dis)favors, for example, some large shareholder or a minority
group.

We study all possible distributions of voting weights among three players who
decide on three or four alternatives. We show that (i) top choice success and av-
erage rank success can be locally very sensitive to rule or weight changes, (ii) the
individually most advantageous rule differs across players and (iii) the respective
success maximizer may vary non-monotonically in weight. Then we analytically
derive success-maximizing rules if an arbitrary number of players have equal voting
weights. The resulting recommendations extend to arbitrary weight distributions if
the objective is to maximize the weighted aggregate success of all voters.

We finally explore data on actual corporate voting rights and demonstrate how
success indices can support shareholders in selecting a voting rule. In particular, we
study the distribution of voting shares in S&P 100 corporations. The high sensitivity
of recommendations to the exact distribution of voting weights that is observed for
three players suggests differently, but computations for the ten largest shareholders in
the respective corporations reveal a robust pattern. Echoing the result for symmetric
weights, we find that in most cases the plurality rule maximizes top choice success,
while the Borda rule maximizes average rank success.

Regression analysis shows that the advantage of having a higher relative voting
weight can be picked up surprisingly well for the S&P 100 data by standard indices of
binary voting power, which have, e.g., featured in recent studies on common owner-
ship (Azar, Schmalz and Tecu 2018; Backus, Conlon and Sinkinson 2021). The voting
method determines additional 1–3% of success a priori. This is in the same ballpark

4Voting power and success differ conceptually. The former refers to the ability to influence the
voting outcome, and the latter refers to the individual evaluation of outcomes. Your vote may make
c, d or e the winner (influence), but all may be evaluated low compared to your favorite option a
(success).
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as the average success advantage of 2.2% for the seventh largest shareholder of an
S&P 100 constituent compared to the respective tenth largest shareholder (holding
1.78% vs. 1.14% of a firm’s stock on average).

While our analytical approach is descriptive of voting weights in real-world
settings, actual voting often works differently. Controversial issues may be prede-
termined by a few key players without clear rules and their pre-selected favorite is
proposed to a plenary or general meeting as a simple ‘yes’-or-‘no’ motion – poten-
tially framing even the narrow winner of earlier decision stages as consensual.5 Our
model is likely to be descriptive of the dynamics of these predeterminations. In that
sense, the present investigation extends beyond settings with binding legal rules,
such as elections between mayoral candidates or legislative choices in parliaments:
weighted committees can be viewed as at least first approximations also of the early
decision stages in which, say, a CEO candidate or acquisition strategy is selected from
three or more options in unofficial straw votes before being approved at an annual
meeting.6

Our study contributes to the literature on corporate governance and general col-
lective choice analysis in several respects. First, we provide a systematic computa-
tional basis for the existing anecdotal evidence on how sensitive collective decisions
are to the adopted voting method, given more than two options and asymmetric vote
numbers. This complements insights from rule comparisons for selected examples
(see, e.g., Riker 1982, Saari 2001 or Felsenthal and Nurmi 2018) and historical case
studies (e.g., Leininger 1993 scrutinizes the ‘fatal’ voting procedure that moved the
government of reunified Germany from Bonn to Berlin; Tabarrok and Spector 1999
suggest that Borda’s method might have avoided the US civil war; Maskin and Sen
2016 reason that Donald Trump owes his 2016 election to the use of plurality rule
in the Republican primaries). We show how the adopted voting method matters on
average and for a wide range of voting weight distributions.

5For instance, of the more than 600 votes from 2017 to 2023 on issues that require only a qualified
majority in the EU Council of Ministers, about 84% of the motions would have passed also un-
der unanimity rule (own calculations, data retrieved from https://www.consilium.europa.eu/en/
documents-publications/public-register/votes/). The IMF stipulates that “a shortlist of three
candidates” is prepared for the position of IMF Managing Director and that choice from it is “by
a majority of the votes cast” on the Executive Board (IMF Press Release 16/19). Quite magically, a
single consensus candidate has always emerged before any competitors were officially shortlisted and
rejected. See Mayer and Napel (2020) for further details.

6We point to McCahery, Sautner and Starks (2016) or Bowley, Hill and Kourabas (2023) for evidence
on how shareholders exert power through behind-the-scenes interaction and Gantchev (2013) on the
costs associated with different forms of shareholder influence.
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Second, we construct success indices that quantify the differences between rules.
These indices allow the assessment of charters, by-laws, statutes, etc. from an a pri-
ori perspective. Neither of the probabilistic preference cultures that we invoke in
this assessment will match the distribution of preferences in a given board, annual
meeting or parliament exactly, but they provide valuable benchmarks. One captures
independent idiosyncratic preferences (impartial culture) and the other incorporates
correlated attitudes that reflect a common interest (impartial anonymous culture).
Success indices are similar in this respect to power indices for binary voting. We
demonstrate that the latter do a good job at predicting success also for non-binary
decision-making. Our investigation thus lends additional credence to many previous
studies of weighted voting – in corporations, the US Electoral College, the EU Coun-
cil, the IMF Board of Directors, etc. – that rely on traditional power indices (see Holler
and Nurmi 2013).

Third, we bring our analytical insights to a real-world setting and find that,
despite high sensitivity of success under a given voting rule to the applicable voting
weights in theory, a simple rule of thumb captures empirical patterns well. We
show that even with the significant asymmetries among big investors in S&P 100
corporations – involving mean holdings of >10% for the largest vs. ≈1% for the tenth-
largest – the shareholders have almost identical interests concerning which (straw)
voting rule should be used when, e.g., a location for a big facility, new CEO or auditor
needs to be singled out from multiple options prior to an official ‘yes’-or-‘no’ vote.
It turns out to matter more whether a high average rank or getting one’s favorite
better reflects individual objectives than whether one holds the first or tenth-most
shares: plurality rule maximizes the top choice probability and Borda rule produces
the highest average outcome rank. We also find that Borda rule generally links
voting weights to success the most closely. This means that it provides particularly
transparent incentives for investors who want an acquisition of additional ordinary
shares to translate into additional voting success, not just voting rights.

We next explain in more detail how this investigation connects to previous anal-
ysis of weighted voting and axiomatic assessments of social choice rules (Section 2).
The framework of weighted committee games and our measures of a priori voting
success are introduced in Sections 3 and 4. We then consider a wide range of small
committees in Section 5 and actual voting share distributions in S&P 100 constituents
in Section 6. We conclude in Section 7. Appendices A and B assess the robustness of
our findings regarding the adopted tie breaking assumption and strategic voting.
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2 Relation to the Literature on Weighted Voting

Individual-based a priori evaluations of voting systems date back to the Constitu-
tional Convention in Philadelphia in 1787 (see Riker 1986). However, they have
mostly been restricted to binary decisions. In particular, various measures of voting
power have been applied to weighted voting games and more general simple (voting)
games formalized by von Neumann and Morgenstern (1953, ch. 10). The Penrose-
Banzhaf and Shapley-Shubik indices are the most prominent such measures (Penrose
1946; Banzhaf 1965; Shapley and Shubik 1954).7 They map a given distribution of
voting weights for ‘yes’-or-‘no’ decisions (or sets of winning and losing coalitions)
to individual decisiveness and a priori influence.

Analogous investigations of preference satisfaction and voting success have re-
ceived less attention. A reason for this is that being successful is commonly seen as
a corollary to holding power (cf. Barry 1980). The probability of obtaining the pre-
ferred outcome (voting success) is, in fact, an affine transformation of the probability
of being decisive for the outcome (voting power) if all ‘yes’-or-‘no’ configurations
among players are equally likely. The vast literature that has studied voting rules
in the US Electoral College, the UN Security Council, the Council of the European
Union, national parliaments, the European Central Bank (see the contributions in
Holler and Nurmi 2013) or publicly traded corporations (e.g., Leech 1987, 1988 or
Azar et al. 2018) hence focuses on decisiveness.

However, voting power need not be what decision-makers care about. Laruelle,
Martı́nez and Valenciano (2006, p. 197) remark that “practitioners have often raised
objections about the power indices approach . . . [and ask] why pay so much attention
to decisiveness when success seems a more important issue for the involved voters?”
Moreover, the mathematical links between power and success are fragile. Their affine
relation collapses already for mild interdependencies among voter preferences, such
as the preference model underlying the Shapley-Shubik index (see Kirsch 2023).

The connection between power and success can even be non-monotonic if choices
concern more than two options. For instance, every voting procedure designed to
select the so-called Condorcet winner, i.e., the winner of a complete pairwise majority
contest if such contest creates no cycle, is subject to the no show paradox (Moulin 1988).
This implies that individuals or groups are sometimes strictly better off not casting
all their eligible votes. Weighted voting analysis hence benefits from dedicated

7See Felsenthal and Machover (1998), Laruelle and Valenciano (2008) or Napel (2019) for
overviews. Extensions to weighted committee games are studied by Kurz, Mayer and Napel (2021).
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assessments of success especially for non-binary decisions.
Analysis of a priori success also complements the traditional social choice lit-

erature by adding a neglected individual-based perspective. Numerous scholars –
with seminal contributions by Arrow (1951), May (1952), Sen (1970), Gibbard (1973),
Young (1974), Satterthwaite (1975) or Moulin (1988) – have investigated decision rules
such as plurality or pairwise majority voting from an axiomatic viewpoint that high-
lights desirable aggregate properties. But every voting method with normatively
appealing properties also has unappealing ones. The corresponding investigations
have produced detailed checklists on the (non-)fulfillment of various desirable crite-
ria by common voting rules (cf., e.g., Felsenthal and Nurmi 2018), debate on how to
prioritize them in specific contexts (Laslier 2012) and computations of the likelihood
of a given rule violating a specific property (see, e.g., Gehrlein and Lepelley 2017).
Voting experts may still recommend several different methods for good normative
reasons, while many practitioners know: if the by-laws permitted, the optimal rule
for getting what you want would be dictatorial. We therefore take the position of
a self-interested decision-maker and ask: How well does this vs. another standard
voting rule serve my personal goals a priori? This is a profane but natural question.
To the best of our knowledge, it has been addressed only for binary decisions so far
(cf. Rae 1969 and Taylor 1969).

3 Weighted Committee Games

We build on the generalization of binary weighted voting games (von Neumann and
Morgenstern 1953) to multi-option weighted committee games as developed by Kurz
et al. (2020). These games consider a set N = {1, . . . ,n} of voters or players such that
each voter i ∈ N has strict preferences Pi over a finite set A = {a1, . . . , am} of m ≥ 2
alternatives. We may write a ≻ b ≻ c or abc for Pi when the player’s identity is clear.
The set of all m! strict preference orderings on A is denoted by P(A). A voting rule
r : P(A)n

→ A maps each preference profile P = (P1, . . . ,Pn) to a winning alternative
a∗ = r(P).8 Rule r is anonymous if for any P ∈ P(A)n and any permutation ρ : N → N

8Aggregating heterogeneous preferences presents a challenge different from aggregating infor-
mation among voters with identical preferences. On the latter see, e.g., Nitzan and Procaccia (1986),
Young (1995) or Pivato (2013). Preferences for specific options can be heterogeneous among sharehold-
ers because these have distinct incentives, time preferences or attitudes towards risk and uncertainty.
Investment horizons and business philosophies typically differ, e.g., between founders and venture
capitalists, retail and institutional investors, or activist hedge funds and pension funds. Or consider

7



Table 1: Considered baseline voting rules

Rule Winner a∗ ∈ {a1, . . . , am} at preference profile P = (P1, . . . ,Pn)

Borda rB(P) ∈ arg maxa∈A

∑
i∈N bi(a,P)

Copeland rC(P) ∈ arg maxa∈A

∣∣∣{a′ ∈ A | a ≻P
M a′}

∣∣∣
Plurality rP(P) ∈ arg maxa∈A

∣∣∣{i ∈ N | ∀a′ , a ∈ A : aPia′}
∣∣∣

Plurality runoff rPR(P)


= rP(P) if

∣∣∣{i ∈ N | ∀a′ ∈ A ∖ {rP(P)} : rP(P)Pia′}
∣∣∣ > n

2 , else

∈ arg max
a∈{a(1),a(2)}

∣∣∣{i ∈ N | ∀a′ , a ∈ {a(1), a(2)} : aPia′}
∣∣∣

we have r(P) = r(ρ(P)) where ρ(P) := (Pρ(1), . . . ,Pρ(n)). It is neutral if for any P ∈ P(A)n

and any permutation ρ : A → A we have r(ρ(P)) = ρ(r(P)) where, with slight abuse,
ρ(P) denotes the application of ρ to each alternative in the full preference profile.

We focus on truthful voting under one of the four anonymous rules that are
summarized in Table 1, assuming lexicographic tie breaking.9 Under plurality rule rP

each voter indicates his or her top-ranked alternative and the one ranked first by the
most voters is chosen. This is the winner also under plurality (with) runoff rule rPR if
the obtained plurality constitutes a majority (i.e., more than 50% of votes); otherwise
a runoff vote is conducted between the alternatives a(1) and a(2) that obtained the
highest and second-highest plurality scores in the first stage.

Borda rule rB has each player i assign a score of m−1, m−2, . . . , 0 to the alternative
that he or she ranks first, second and so on. These scores bi(a,P) :=

∣∣∣{a′ ∈ A | aPia′}
∣∣∣

coincide with the number of alternatives that i positions below a. The alternative
with the highest total score is selected. Copeland rule rC considers pairwise majority
comparisons between all alternatives. They define the majority relation a ≻P

M a′ :⇔∣∣∣{i ∈ N | aPia′}
∣∣∣ > ∣∣∣{i ∈ N | a′Pia}

∣∣∣ and the alternative that beats the most others
according to ≻P

M is selected. rC is the only Condorcet-consistent method among the
rules in Table 1: whenever some alternative a beats all others, then rC(P) = a.

A weighted committee (game) (N,A, r|w) combines a set of players N, a set of alter-
natives A and an anonymous baseline rule r with a vector w = (w1, . . . ,wn) ∈ Nn

0 of

family fighting over the succession to a patriarch CEO; a (non-)diversified investor with (no) stakes in
competing firms who does (not) internalize profit spillovers; international investors subject to distinct
standards for good governance; etc.

9Deterministic tie breaking simplifies the presentation. We show in Appendix A that all results
are robust to anonymous random tie breaking. Strategic voting is addressed in Appendix B.
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Table 2: Effect of the voting rule on the winning option

P1 P2 P3

a b c
d c e
e d d
c e b
b a a

⇒

rP
|w(P) = a (a has max. plurality tally of 5)

rPR
|w(P) = b (b beats a in runoff vote by 6 : 5)

rC
|w(P) = c (c wins all pairwise votes)

rB
|w(P) = d (d has max. Borda score of 27)

Note: This table illustrates an example of how standard voting rules imply different choices
for P = (P1,P2,P3) when w = (5, 4, 2).

voting weights: each player i can cast wi votes, e.g., by virtue of owning multiple
voting shares or controlling as many seats on a board. Preferences Pi thus enter
into the final decision wi times. The applicable mapping from preference profiles to
collective choices then is

r|w(P) := r([P1]w1 , [P2]w2 , . . . , [Pn]wn) = r(P1, . . . ,P1︸     ︷︷     ︸
w1 times

,P2, . . . ,P2︸     ︷︷     ︸
w2 times

, . . . ,Pn, . . . ,Pn︸     ︷︷     ︸
wn times

) (1)

for all P ∈ P(A)n. The mapping is homogeneous of degree zero in w and so we may
equivalently consider relative voting weights w/

∑
wi.

Two committees (N,A, r|w) and (N,A, r′|w′) are called equivalent if they produce the
same outcomes no matter which preferences P are considered, despite r , r′ or w , w′

(cf. Kurz et al. 2020). For example, both rP
|(3, 1, 1) and rC

|(5, 2, 1) select player 1’s top
choice for every P, making player 1 a dictator. By contrast, Section 1’s shareholder
example – summarized again in Table 2 – proves that committees which use rP, rPR, rC

and rB are non-equivalent if w = (5, 4, 2) and m = 5. We are interested in committees
that are non-equivalent and compare a player’s success in such committees for all
conceivable preference configurations P ∈ P(A)n from an a priori perspective.

4 Measuring A Priori Success

The a priori assessment of player i’s success in a given committee is contingent on how
the collective decisions r|w(P) are evaluated relative to i’s individual preference Pi and
on the applicable distribution of preferences. We will make several complementing
assumptions that we consider informative. They do not come with a claim to be the
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‘right’ or universally recommended ones.
We define two indices: The top choice (probability) index (TCI) takes a player’s

success to mean having his or her most preferred option become the collective choice.
The average rank index (ARI) counts every outcome that is better than the player’s
bottom-ranked alternative as a partial success at least. The latter index can also be
interpreted as reflecting a risk-neutral utility function over the available options. One
can conduct more general expected utility assessments by combining both indices in
the case of m = 3 alternatives.

4.1 Top Choice Index and Average Rank Index

Much of social choice theory focuses on ordinal preferences alone but we here want
to condense a player’s prospect of taking collective choices from A according to
r|w into an interpersonally comparable number. Let us therefore consider a player-
independent success function σ : A × P(A) → R such that σ(a,Pi) > σ(a′,Pi) ⇒ aPia′,
and σ(a∗,Pi) = 1 (0) if a given committee choice a∗ is i’s most (least) preferred option.
Our first benchmark is σ ≡ s with

s(a∗,Pi) =

1 if a∗ is ranked top in Pi,

0 otherwise.
(2)

This equates success to getting one’s top choice.
A complementing, more gradual evaluation is achieved by s’s linear interpolation

s̃(a∗,Pi) =

∣∣∣{a′ ∈ A : a∗Pia′}
∣∣∣

m − 1
. (3)

This also attributes success to outcomes between the best and worst case and eval-
uates i’s median-ranked alternative as exactly half a success for player i. Function s̃
or variations based, e.g., on a hyperbolic interpolation of s are compatible with inter-
preting (a priori) success as an (expected) utility. By contrast, piecewise constancy of
s clashes with Pi being a strict ordering when m > 2.

Given some player-independent success function σ and probability measure Pr
on P(A)n, we refer to the expected value of σ(r|w(P),Pi) as player i’s a priori success in
committee (N,A, r|w). In particular, we define the top choice index

TCIi(N,A, r|w) := E[s(r|w(P),Pi)] =
∑

P∈P(A)n

Pr(P) · s(r|w(P),Pi), (4)

10



and, analogously, the average rank index ARIi(N,A, r|w) := E[s̃(r|w(P),Pi)] as the two
success indicators of our interest. TCIi equals the probability that collective decisions
match player i’s top-ranked alternative. ARIi is an inverse measure of the average
rank of decisions according to i’s preferences: a value of x ∈ [0, 1] means that collective
decisions on average correspond to the

(
m−(m−1)·x

)
-th best alternative from player i’s

perspective. TCIi = ARIi = 1 if and only if i is a dictator and TCIi ≡ ARIi when m = 2.
In case of three alternatives, which many of our later computations focus on,

working with TCIi and ARIi is without loss of generality. This is because the prob-
ability of the collective choice matching i’s second-ranked alternative evaluates to
2 ·(ARIi−TCIi) and that for i’s bottom rank is 1+TCIi−2 ·ARIi. These probabilities and
TCIi suffice to compute a priori success E[σ(r|w(P),Pi)] for any rank-based success
function10 and one can also determine E[ui(r|w(P))] for any cardinal utility function
ui : A→ R that represents i’s preferences over lotteries on A = {a1, a2, a3}.

Concerning the probability distribution over preference profiles P ∈ P(A)n that
defines expectations, a popular default is the impartial culture (IC) assumption: all
players’ preferences P1, . . . ,Pn ∈ P(A) are taken to be independent and drawn at
random. Then

Pr(P) = (m!)−n. (5)

The IC distribution is underlying the Penrose-Banzhaf voting power index and has
served as the starting point for many computations in the analysis of voting. See
Klahr (1966), Fishburn (1971), Merrill (1984) or Nurmi and Uusi-Heikkilä (1985) for
pioneering assessments of voting paradoxes, and Gehrlein and Lepelley (2017) for
many more recent findings.

The most prominent alternative to IC is the impartial anonymous culture (IAC),
which is underlying the Shapley-Shubik voting power index. The IAC model is im-
partial regarding all rankings π ∈ P(A), just like IC, but assumes positive correlation
across players. The respective probability distribution is given by11

Pr(P) =
[(

m! + n − 1
n

)
·

(
n

nP
1 , . . . , nP

m!

)]−1

. (6)

Because IC presumes all players to have independent preferences, it typically
yields an upper bound for success in adversarial scenarios where i’s preferences are

10For instance, success could also mean avoiding one’s worst option, i.e., ŝ(a∗,Pi) = 1 ⇔ a∗ is not
ranked bottom in Pi. Proposition 1 below would then call for a method known as anti-plurality voting.

11See, e.g., Berg (1985) or Kurz et al. (2021) for details. The respective Pólya urn generalization
could easily be accommodated also in this study.
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negatively correlated to those of others. By contrast, IAC provides a more consensus-
oriented outlook. It assumes some similarity in how players rank options and bounds
individual success for potentially even greater preference affiliation from below.

Preferences in a real shareholder meeting or hiring committee will typically violate
the IC or IAC assumptions. Working with the probabilities in equations (5)–(6) means
doing thought experiments that assess voting from behind a ‘veil of ignorance’. One
disregards historical preference patterns, recent alliances, logrolling deals, etc. partly
for lack of adequate data but also purposely in order to obtain a neutral constitutional
evaluation of voting rules. The resulting assessments – e.g., that rule r and weights w
make player i twice as successful than player j a priori – reflect the (un)levelness of the
playing field for decision-making. Corresponding numbers typically differ from the
players’ actual (a posteriori) voting success in a committee since just a few preference
configurations determine the latter and players’ interaction involves social, political
or financial dimensions that are orthogonal to voting rules.

4.2 Illustration

For illustration, let us evaluate a priori success when our stylized shareholders with
voting weights of w = (45%, 35%, 20%) choose between candidates A = {a, b, c}.
The six possible individual rankings in P(A) = {abc, acb, bac, bca, cab, cba} give rise
to 63 = 216 different preference profiles that may obtain for a particular decision.
Table 3 shows a selection of them, the respective winners r|w(P) implied by voting
rules r ∈ {rP, rPR, rC, rB

} and associated success values s(r|w(P),Pi).
For instance, the highlighted profile P = (cab, bca, abc) implies that c is selected

under plurality and Borda rule. In contrast, b is selected under plurality with a runoff
and a under Copeland rule. So, at that profile, shareholder 1 is (fully) successful under
plurality and Borda rule. Additionally, half success would be attributed to player 1
by success function s̃ under Copeland rule (indicated by 0 in Table 3).

The corresponding expected success is shown at the bottom of Table 3 for the
IC and IAC assumptions. The preference similarity reflected by IAC raises a priori
success for all players relative to the preference independence assumed by IC. By
definition, success figures for ARI(·) are greater than those for TCI(·).

The benchmark success of an independent outsider or ‘dummy player’ who has
no say in the collective decision is 1/3 and 1/2 for the TCI and ARI, respectively.12 A

12For general m, a dummy player d with independent preferences has a TCId(·) = 1/m chance to see
his or her top choice win and must expect an outcome exactly in the middle, implying ARId(·) = 1/2.
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Table 3: Illustration of success computations

Pr(P) for s(·,Pi) for player i =
P = (P1,P2,P3) IC IAC rP

|w(P) 1 2 3 rPR
|w(P) 1 2 3 rC

|w(P) 1 2 3 rB
|w(P) 1 2 3

abc, abc, abc 1
216

1
56 a 1 1 1 a 1 1 1 a 1 1 1 a 1 1 1

abc, abc, acb 1
216

1
168 a 1 1 1 a 1 1 1 a 1 1 1 a 1 1 1

abc, abc, cab 1
216

1
168 a 1 1 0 a 1 1 0 a 1 1 0 a 1 1 0

...
...

...
...

...
...
...

...
...
...
...

...
...
...
...

...
...
...
...

cab, bca, abc 1
216

1
336 c 1 0 0 b 0 1 0 a 0 0 1 c 1 0 0

cab, bca, acb 1
216

1
336 c 1 0 0 c 1 0 0 c 1 0 0 c 1 0 0

cab, bca, bac 1
216

1
336 b 0 1 1 b 0 1 1 b 0 1 1 c 1 0 0

...
...

...
...

...
...
...

...
...
...
...

...
...
...
...

...
...
...
...

cba, cba, cba 1
216

1
56 c 1 1 1 c 1 1 1 c 1 1 1 c 1 1 1

Sum total 1 1 168 120 120 144 144 120 136 136 136 147 129 111

TCIi(·) for IC 168
216

120
216

120
216

144
216

144
216

120
216

136
216

136
216

136
216

147
216

129
216

111
216

≈ .78 .56 .56 ≈ 0.67 .67 .55 ≈ .63 .63 .63 ≈ .68 .60 .51

TCIi(·) for IAC 264
336

216
336

216
336

240
336

240
336

216
336

232
336

232
336

232
336

243
336

225
336

195
336

≈ .79 .64 .64 ≈ .71 .71 .64 ≈ .69 .69 .69 ≈ .72 .67 .58

ARIi(·) for IC 180
216

144
216

144
216

162
216

162
216

156
216

162
216

162
216

162
216

177
216

162
216

142.5
216

≈ .83 .67 .67 ≈ 0.75 .75 .72 ≈ .75 .75 .75 ≈ .82 .75 .66

ARIi(·) for IAC 282
336

246
336

246
336

264
336

264
336

258
336

264
336

264
336

264
336

282
336

267
336

238.5
336

≈ .84 .73 .73 ≈ 0.79 .79 .77 ≈ .79 .79 .79 ≈ .84 .79 .71

Note: This table illustrates success computations when voters N = {1, 2, 3} decide on options A = {a, b, c}
by rule r|w for w = (45%, 35%, 20%) and r ∈ {rP, rPR, rC, rB

}. Cases where s(·,Pi) , s̃(·,Pi) = 1
2 are indicated

by 0.

figure of, e.g., TCI3(·) = 111/216 ≈ 0.51 under Borda rule shows that shareholder 3’s
voting rights clearly improve the chances to get what he or she wants. Taking de-
cisions by pairwise majority voting further raises these chances: Copeland rule is
the best from shareholder 3’s perspective (lilac highlights), no matter which prefer-
ence culture or success function is considered. By contrast, the large shareholder 1
is, a priori, most successful if the plurality rule is used. Shareholder 2’s individ-
ual success maximizer differs for an all-or-nothing conception of success (plurality
runoff) and an average rank perspective (Borda). From either perspective, we find
that player-specific voting weights lead to player-specific answers to the question of
which voting rule reflects one’s personal preferences the best a priori.
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w=(45%,35%,20%)

"#=(45%,45%,10%)

w1 w2

w3

Figure 1: Simplex of all distributions of relative voting weights for n = 3

5 General Success Evaluations

The above illustration concerned one of the many conceivable distributions of voting
weights among three players. Suppose that shareholder 3 sells a 10% stake to share-
holder 2, resulting in the initial ownership structure w̃ = (45%, 45%, 10%) of Apple.
How would the switch from w = (45%, 35%, 20%) change 2’s and 3’s prospects for
implementing their respective preferences? How is shareholder 1 affected?

Such questions could be answered by redoing the computations illustrated in
Table 3 case by case. The identification of rule-specific weight equivalence classes
by Kurz et al. (2020), however, facilitates the determination of a player’s success for
all possible distributions of voting weights: one needs to conduct the computations
behind Table 3 for only one representative of each equivalence class. We will here
cover all 6, 7, 4 and 51 classes that exist for plurality, plurality runoff, Copeland and
Borda rule if n = m = 3.13

13For m = 4 options there are 6 plurality, 7 plurality runoff, 4 Copeland and 505 Borda equivalence
classes, corresponding to committees that differ structurally rather than just nominally. Having only
n ≤ 3 relevant players may be unrealistic for big corporations and parliaments but fits many private
firms, startups, joint ventures or party alliances and government coalitions.
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(0.67,0.67,0.83)

Figure 2: ARI(·) for plurality rule rP and all weight distributions under IC when n = m = 3;
ARIi = 0.72 for all players if w∗ = (1/3, 1/3, 1/3)

5.1 Success for Three Players with Arbitrary Voting Weights

To present our results, we use the standard projection of the three-dimensional sim-
plex of relative voting weights into the plane. It is illustrated in Figure 1: vertices
give 100% of voting weight to the indicated player, e.g., player 1 in the bottom left
corner; the midpoint corresponds to symmetric weights of (1/3, 1/3, 1/3). Player 1
(2; 3) wields a plurality of votes in the shaded (blank; dotted) quadrangle.

Figures 2–4 respectively show all achievable ARI(·)-vectors under IC for plurality
with or without runoff and the Copeland method for m = 3 options, rounded to
two decimal places.14 Considerably more equivalence classes and associated success
levels exist under the Borda rule. Figure 5 indicates the success values for player 1
by different colors – coded from red for a dummy player (ARI1(·) = 0.5) to blue for a
dictator (ARI1(·) = 1). The values for player 2 or 3 correspond to player 1’s success
for the permuted distributions (w2,w1,w3) and (w3,w2,w1).

We can see that a switch from w = (45%, 35%, 20%) to w̃ = (45%, 45%, 10%)
increases player 2’s a priori voting success only under plurality and Borda rule

14Analogous figures for IAC, TCI(·) or m = 4 are available from the authors upon request.
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Figure 3: ARI(·) for plurality runoff rule rPR and all weight distributions under IC when
n = m = 3; ARIi = 0.75 for all players if w∗ = (1/3, 1/3, 1/3)
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Figure 4: ARI(·) for Copeland rule rC and all weight distributions under IC when n = m = 3
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Borda Success P1 3,3 mit besserer Legende

1 2

3

Figure 5: ARI1(·) for Borda rule rB and all weight distributions under IC when n = m = 3

(with increases from about 0.67 to 0.75, and 0.75 to 0.79, respectively). At the same
time, expected preference satisfaction remains constant for all players under plurality
runoff and Copeland rule. If a package of just 9% had been traded, the vote change
would have only made a difference under Borda rule.

Figures 6 and 7 summarize which of the considered voting rules maximize
player 1’s success, ARI1(N,A, r|w) or TCI1(N,A, r|w), for any given distribution of
voting weights among three players deciding on three or four alternatives.15 Tongue
in cheek, the figures provide a map for any self-interested member of a committee
with a say on its default voting rule, such as a shareholder in a corporation with few
co-owners. The figures can also help others prevent foul play.

5.2 Success for an Arbitrary Number of Symmetric Players

We can see in Figures 6 and 7 that plurality and Borda rule respectively maximize
the ‘all-or-nothing’ top choice success TCI1(·) and average-rank success ARI1(·) for
an equal distribution of voting weight. This finding extends to arbitrary numbers of

15Again, the success-maximizing rules for voters 2 and 3 can be inferred from considering the
permuted distributions (w2,w1,w3) and (w3,w2,w1). Some focal lines or points in the figures are
manually enlarged for better visibility.

17



(a) ARI and IC (b) ARI and IAC

1 2

3

Best rule Success P1 3,3

rB, rC, rP, rPR
rC, rP, rPR
rB, rC, rPR
rC, rPR
rB, rP
rB, rC
rP
rB
rC

1 2

3

Best rule Success P1 3,3 IAC

rB, rC, rP, rPR
rC, rP, rPR
rB, rC, rPR
rC, rPR
rB, rP
rB, rC
rP
rB
rC

(c) TCI and IC (d) TCI and IAC

1 2

3

Best rule Top Choice P1 3,3

rB, rC, rP, rPR
rC, rP, rPR
rB, rPR
rP, rPR
rB, rC
rP
rPR
rB
rC

1 2

3

Best rule Top Choice P1 3,3 IAC

rB, rC, rP, rPR
rC, rP, rPR
rP, rPR
rB, rP
rP
rPR
rB
rC

Figure 6: Maximizers of player 1’s voting success for n = m = 3
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(a) ARI and IC (b) ARI and IAC
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Figure 7: Maximizers of player 1’s voting success for n = 3 and m = 4
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players or alternatives, and analogous statements apply for other success functions.
Namely, we have the following general recommendation for which voting rule r to
use if voters are symmetric, i.e., all have voting weight wi = 1/n and their preferences
are statistically exchangeable a priori, such as for IC or IAC:

Proposition 1. Consider symmetric voters N = {1, . . . ,n} whose preferences over A =
{a1, . . . , am} are exchangeable random variables a priori and a success function σs such that
σs(a∗,Pi) = sk with 1 = s1 ≥ s2 ≥ . . . ≥ sm = 0 whenever Pi ranks a∗ in k-th place. Then any
player i’s a priori success E[σs(r(P),Pi)] is maximized by the scoring rule rs that selects

rs(P) ∈ arg max
a∈A

n∑
i=1

m∑
k=1

sk · χ
Pi
k (a)

whereχPi
k (a) = 1 if Pi ranks a in k-th place and 0 otherwise. In particular, TCIi(·) is maximized

by plurality rule rP and ARIi(·) is maximized by Borda rule rB.

Proof. Exchangeable preferences imply E[σs(r(P),Pi)] = E[σs(r(P),P j)] for any play-
ers i, j ∈ N. Maximization of E[σs(r(P),Pi)] with respect to r is hence equivalent to
the maximization of

n∑
j=1

E[σs(r(P),P j)] =
n∑

j=1

∑
P∈P(A)n

Pr(P) · σs(r(P),P j)] =
n∑

j=1

∑
P∈P(A)n

Pr(P) ·
m∑

k=1

sk · χ
P j

k (r(P))

(7)

=
∑

P∈P(A)n

Pr(P) ·
[ n∑

j=1

m∑
k=1

sk · χ
P j

k (r(P))
]
. (8)

By definition, rs(P) maximizes the bracketed term in equation (8) for every P ∈ P(A)n.
Hence rs maximizesE[σs(r(P),Pi)]. It remains to note that 1 = s1 > s2 = . . . = sm = 0 for
all-or-nothing success function s(·) and that then rs = rP. Similarly, sk = (m−k)/(m−1)
holds for k = 1, . . . ,m for the more gradual function s̃(·). Then, rs = rB because re-
scaling Borda scores bi(a,P) by 1/(m − 1) > 0 leaves the score maximizers and thus
the selected outcomes unchanged.

The intuition behind Proposition 1 is straightforward: plurality rule is defined
as maximizing the number of voters who see their top choice win. In a perfectly
symmetric world, this is equivalent to maximizing the probability that a fixed voter
sees its top choice win. Similarly, Borda rule picks the option with the highest average
rank among all voters, which entails maximizing the expected rank assigned to the
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outcome by any fixed voter under symmetry. Changing the order of summation in
equations (7) and (8) formalizes just this but we are unaware of explicit previous
statements of this generalization of the Rae-Taylor theorem for binary collective
decisions (Rae 1969; Taylor 1969).

It is not straightforward but important that even the slightest deviation from
perfect symmetry can destroy the optimality of rP and rB identified in Proposition 1.
To see this, move slightly to the northeast or northwest of the midpoint of the
simplex, e.g., in Figure 6(d): rP immediately stops being TCI1-optimal. Proposition 1
is therefore a fragile result. Equal voting weights represent a knife-edge situation
and quick extrapolation of conclusions holding under symmetry should be met
with suspicion. In particular, the intuitive advantage of plurality rule (Borda rule)
in yielding high top choice success (average rank success) is proven to be frail by
Figures 6 and 7.

There is no monotonic pattern for which voting rules are optimal for player 1 if
the symmetry is broken. Consider Figure 6(d) and w = (w1, (1−w1)/2, (1−w1)/2) for
illustration: all rules make 1 a dummy player for w1 = 0 but rP and rPR maximize 1’s
success given the correlation with players 2 and 3’s preferences;16 rC is the unique
TCI1-maximizer for w1 ∈ (0, 1/3); then rC, rP and rPR are success maximizing for
w1 = 1/3; only rP maximizes TCI1 for w1 ∈ (1/3, 3/7] and w1 = 1/2, while rP is tied
with rB for w1 ∈ (3/7, 1/2); again rC, rP and rPR are optimal for w1 ∈ (1/2, 2/3]; and
finally all four rules induce TCI1 = 1 for w1 ∈ (2/3, 1]. A similar back and forth can
also be seen in the other panels of Figures 6 and 7.

Based on these observations we should expect the theoretical result in Propo-
sition 1 to provide little to no practical guidance for shareholder voting at publicly
traded companies, parliaments, etc. unless all of the relevant stakeholders have equal
voting weights. Quite surprisingly, the findings obtained in Section 6 for prominent
US share distributions will disprove this conjecture.

5.3 Other Evaluation Criteria

The premise motivating our investigation is that a given player i cares only about its
own success, not some greater good. Let us nonetheless comment on two additional
and normatively appealing aspects of voting rules: the total of individual success
values and the extent to which voting success correlates with voting weight.

16Note that rP and rPR are equivalent if n = 2 or if only two players have positive weight. Also, all
considered methods amount to simple majority voting à la May (1952) if m = 2.
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5.3.1 Aggregate Success of All Players

By-laws or rules of procedure should appeal also to future investors, not just the
founders or current owners of a company. It may be unclear who will be a large or
a small shareholder. Instituting a rule that implies a high sum of individual success
values then is attractive. High aggregate a priori success is also desirable from the
welfare perspective of a regulator. It is good to know, therefore, that plurality (Borda)
rule maximizes the sum of all voters’ top choice (average rank) success. This is a
direct corollary of Proposition 1 for symmetric voters but extends to any asymmetric
weights if we treat each share equally, i.e., consider the weighted sum of individual
success values:

Proposition 2. Under the conditions of Proposition 1, the scoring rule rs maximizes
the w-weighted total success

∑n
j=1 w jE[σs(r|w(P),P j)] for any given w. In particular,∑n

j=1 w jTCI j(·) is maximized by plurality rule rP, and
∑n

j=1 w jARI j(·) is maximized by Borda
rule rB for any distribution of voting weights.

The proof follows directly from replacing
∑n

j=1E[σs(r(P),P j)] by
∑n

j=1 w jE[σs(r|w(P),P j)]
in equation (7) in the proof of Proposition 1. For Proposition 2, one may even drop
the exchangeability condition that is needed for Proposition 1.

5.3.2 Transparency

The extent to which larger shareholdings imply greater success is another aspect that
investors and authorities may care about. Voting rights are the distinguishing feature
of common shares. Thus, differences in ownership should go with differences in how
well the respective shareholder preferences are reflected in corporate decisions.

A simple measure of how transparently a priori voting success is aligned to
voting rights is their correlation. For instance, under Borda rule, IC and m = 3,
the correlation coefficient for the weight distribution w = (45%, 35%, 20%) and the
success distribution ARI(·) = (177/216, 162/216, 142.5/216) in Table 3 is 0.9992. This
number is considerably higher than the respective figures for plurality and plurality
runoff run (0.8030 and 0.9177); the uniform success values for Copeland are entirely
uncorrelated with the given weights.

Figure 8 shows which method maximizes the respective correlation coefficient
for all conceivable voting weight configurations among three players who decide
on three alternatives. The winner is mostly Borda rule – no matter if one considers
ARI or TCI success vectors for the IC or IAC preference distribution. An analogous
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Figure 8: Maximizers of correlation between voting weights and success when n = m = 3
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evaluation using the Kendall rank correlation coefficient gives similar results (with
Borda rule being even more dominant). The underlying reason is that the Borda
method comes with many more weight equivalence classes than the other methods
(cf. Kurz et al. 2020). So, weight variations are more likely to make a difference.
We also confirmed that Borda rule translates the large shareholdings in S&P 100
corporations, which we study next, into success the most transparently.

6 Application to S&P 100 Corporations

As we saw above, the individual optimality of the plurality and Borda voting rules can
break down even for small deviations from symmetric voting weights. We therefore
apply our success measures to a range of actual distributions of voting weights in
order to assess the practical relevance of our findings (cf. Leech 1988). We consider
the ownership structure of the companies in the S&P 100 stock index as composed
at the beginning of 2022. To achieve reasonable computation times, we focus on
m = 3 alternatives and the ten largest shareholdings of each index constituent. The
remaining shares are treated as a homogeneous, perfectly divisible ‘ocean’ of free
float.17

Under the IC assumption, the law of large numbers induces a uniform distri-
bution of the float’s cumulative weight across the m! = 6 possible rankings. We
evaluate success in each of the resulting 610

≈ 60 mio. distinguishable preference
configurations. The situation is more involved under the IAC assumption: positive
correlation between shareholders – both large and small – generates infinitely many
relevant configurations. We therefore approximate a priori success values under IAC
in an extensive Monte Carlo simulation.18

17As a robustness check, we alternatively ignore all but the ten largest shareholders and evaluate
their 610 possible preference profiles. Ignoring smaller shareholders is in line with Azar et al. (2018),
who eliminated all holdings below 0.5%. Disregarding the float does not change any results for IC,
while corresponding findings for IAC become somewhat more similar to the IC findings.

18The exchangeable preferences under IAC can – in line with de Finetti’s theorem – be simulated by
first drawing common preference inclinations p = (p1, . . . , pm!) uniformly from the (m!−1)-dimensional
unit simplex and then determining individual preferences via (conditionally) independent single
draws from the p-multinomial distribution (cf., e.g., Berg 1985). We approximate TCIi (ARIi) by
averaging 350 000 iterations of the following steps: (1) draw p; (2) draw Pi for i = 1, . . . , 10; (3) shortcut
draws for float shareholders by dividing the float’s total weight in proportion to (p1, . . . , pm!); (4)
determine winner a∗; (5) evaluate s(a∗,Pi) (s̃(a∗,Pi)) for i = 1, . . . , 10.
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Table 4: Descriptive statistics for shareholdings in the 92 included S&P 100 corporations

Percentage values for the ith largest shareholder
Shareholdings i = 1 2 3 . . . 10 11 – . . .

Mean 10.76 7.23 5.38 . . . 1.14 62.33
Mean (cumulative) 10.76 18.00 23.38 . . . 37.67 100.00
Standard devation 7.19 1.24 1.26 . . . 0.34 8.46

Standard devation (cumulative) 7.19 7.15 7.13 . . . 8.50 0.00
Maximum 48.87 15.14 9.11 . . . 2.29 72.68

Maximum (cumulative) 48.87 53.38 56.65 . . . 68.92 100.00
Minimum 6.96 4.52 3.27 . . . 0.44 31.08

Minimum (cumulative) 6.96 13.24 17.90 . . . 27.32 100.00

6.1 Data

The considered shareholder data comes from the Thomson Reuters Global Owner-
ship database as of January 19, 2022, accessed via Refinitiv Eikon. The data combines
information from various sources, such as mandatory disclosures, and has previ-
ously been used, e.g., by Bushee and Noe (2000), Azar et al. (2018) or Backus et al.
(2021). We consider only ordinary shares with equal voting rights and exclude cor-
porations with dual or multi-share classes that have distinct voting rights (cf. Backus
et al. 2021). This leaves 92 constituents of the S&P 100 index in our sample. We
consolidated the shareholdings of all BlackRock entities in analogy to Backus et al.
(2021) or Ben-David, Franzoni, Moussawi and Sedunov (2021).

The descriptive statistics in Table 4 provide an overview of the consolidated share
distributions. The largest shareholders of the S&P 100 constituents hold ≈ 7% to
almost 50% of the corporate stock with a standard deviation (std. dev.) of 7.19% and
a mean of 10.76%. The ten largest shareholders hold a cumulative stake of 37.67% on
average. The remaining holdings define the respective free float mentioned above.

For the independent preferences assumed by IC, a sixth of the float’s voting
weight can be associated with each of the six alternative rankings of m = 3 options.
Then, despite not wielding the required majority formally, the largest shareholder of
three S&P 100 firms (Oracle, T-Mobile US, Walmart) can effectively dictate collective
choices under any of our voting rules with a top choice and average rank index value
of TCI1 = ARI1 = 1 (and TCIi = 1/3 or ARIi = 1/2 for shareholders i ≥ 2). The
three corporations are not included in the IC analysis, and so we report results for
altogether 89 (92) out of 100 corporations included in the S&P 100 for IC (IAC).
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Table 5: Success maximizers for S&P 100 shareholders

Success index Success maximizers for the ith largest shareholder
and Prob. distr. r 1 2 3 4 5 6 7 8 9 10

ARI Borda 76 85 56 84 71 76 78 70 73 70
IC Copeland 2 4 33 3 11 7 7 9 4 13

n = 89 Plurality 11 0 0 0 0 0 0 0 0 0
Plurality runoff 0 0 0 2 7 6 4 10 12 6

ARI Borda 87 92 92 92 92 92 92 92 92 92
IAC Copeland 0 0 0 0 0 0 0 0 0 0

n = 92 Plurality 5 0 0 0 0 0 0 0 0 0
Plurality runoff 0 0 0 0 0 0 0 0 0 0

TCI Borda 0 10 7 6 8 9 8 9 9 9
IC Copeland 0 0 19 0 1 0 0 0 0 2

n = 89 Plurality 89 50 60 78 61 70 63 62 66 58
Plurality runoff 0 29 3 5 19 10 18 18 14 20

TCI Borda 0 4 3 3 3 3 3 3 3 3
IAC Copeland 0 0 0 0 0 0 0 0 0 0

n = 92 Plurality 92 88 89 89 89 89 89 89 89 89
Plurality runoff 0 0 0 0 0 0 0 0 0 0

6.2 Results

Table 5 summarizes the success maximizers for the included S&P 100 companies.
The striking message is that the theoretical conclusions of Proposition 1 for a per-
fectly symmetric distribution of voting weight extend to the considered voting share
distributions. Respective shareholdings are highly asymmetric but, with preference
correlation à la IAC, Borda is the best rule for all except 5 of the largest shareholders
if success is evaluated according to the shareholder’s average ranking of collective
choices (ARIi).19 Similarly, the plurality rule maximizes success in overwhelmingly
many cases if a shareholder i cares only about the probability with which it obtains
its top choice (TCIi).

Under IC, plurality rule maximizes the TCI1 value for all 89 of the largest share-
holders, the respective TCI2 number for 50 of the second-largest shareholders, the
TCI3 level for 60 of the third-largest and so on. We obtain similar findings for the
Borda rule and the average rank index: Borda is the ARI1 (ARI2, ARI3, . . . , ARI10) max-
imizer for 76 (85, 56, . . . , 70) of the respective largest (second-largest, third-largest,
. . . , tenth-largest) shareholders out of the included 89 companies. These results

19The exceptions arise when the largest shareholder owns w1 ≥ 20% of shares.
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are totally unexpected given the distribution sensitivity and the non-monotonicities
observed in Section 5 for only three voters.

A robust rule of thumb emerges for most shareholders: make a case for deciding
by Borda rule if your objective is to maximize the ARIi value, and for plurality rule
if you want to maximize TCIi. This is essentially independent of whether you have
the largest, second-largest, etc. holding in a corporation and whether the IC or IAC
preference distribution is deemed more relevant for a personal a priori assessment.
The same recommendation holds for shareholders with small or infinitesimal hold-
ings subsumed in the float20 and, as shown in Proposition 2, Borda and plurality rule
also maximize the weighted total of all shareholders’ success values.

Copeland and plurality runoff rule maximize a player i’s ARIi and TCIi levels
only in a few cases. The key exceptions are ARI3 numbers for the third-largest
shareholders (Copeland is optimal in 33 cases) and TCI2 values for the second-
largest shareholders (plurality runoff is optimal for 29 of them) if all preferences are
considered independent.

Having such exceptions may, of course, make it worthwhile not to rely on a
rule of thumb but to assess voting methods individually and case by case. We
can, for instance, zoom in on the success maximizers for the largest institutional
investors: Vanguard and BlackRock. Both are among the ten largest shareholders
of all examined S&P 100 companies and usually in the top three. It turns out that
the advantage of Borda (plurality) in maximizing their ARIi (TCIi) success level is
pronounced for both of them.21

Figure 9 illustrates the mean values of ARIi and TCIi for the ten largest share-
holders under the applicable voting rule. On the one hand, the figure corroborates
the above rule of thumb: the interpolated lines for Borda (plurality) lie consistently
above those of the other three voting rules when considering ARIi (TCIi).22 On the
other hand, comparing the spaces between the lines to their slopes highlights that,
non-surprisingly, the voting advantage that an investor derives from having more
shares than another tends to matter more than whether this or that rule applies.

We use a linear regression model in order to quantify expected voting rule dif-

20Positive correlation under IAC aligns the interests of a dummy player with the average interests
of the shareholders in Table 5, while all rules yield identical dummy success TCId = 1/3 and ARId = 1/2
under IC. We, moreover, cross-checked the findings reported in Table 5 by repeating the analysis with
an additional shareholder 11 owning 0.1% of shares: all conclusions continued to hold.

21Exceptions arise under IC, with results for TCIBlackRock similar to those for the second largest
shareholders in Table 5.

22Using medians instead of means leads to the same inferences.
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Figure 9: Success indices averaged per shareholding rank across S&P 100 companies
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ferences and to determine their statistical significance. Since it is well-known from
the analysis of binary votes that it is not higher voting weight as such that gives
an advantage, but how this weight facilitates the formation of winning majorities
(or blocking minorities) together with other voters, we opted to include proxies of
shareholders’ voting power instead of the shareholdings themselves. To respect
the underlying correlation pattern, we draw on the Penrose-Banzhaf index (PBI)
for IC and the Shapley-Shubik index (SSI) value for IAC.23 We then estimate the
following regression model using an ordinary least squares (OLS) regression with
heteroscedasticity robust standard errors (White 1980):24

VotingSuccessir = α0 + β1PowerIndexi +

4∑
j=2

β jVotingRulesr + εir, (9)

where VotingSuccess is the shareholder’s success index ARIi (TCIi) and VotingRules are
Copeland, Plurality and PluralityRunoff (Borda, Copeland and PluralityRunoff ) indicator
variables, respectively. PowerIndex represents either shareholder i’s PBI or SSI value,
namely PBIi for IC and SSIi for IAC.

We estimate the regressions for 3 560 (3 680) voting rule-shareholder observations
consisting of the ten largest shareholders of the 89 (92) S&P 100 companies for our
four voting rules considering the IC (IAC) distribution. We present the correspond-
ing results in Table 6. One can see that the adjusted R2 values are very high. The
shareholders’ voting powers – captured heuristically by indices that assume binary
voting – strongly drive both success indexes, ARI and TCI. This finding is especially
pronounced under the IC assumption but the fit is good also for IAC. These obser-
vations retrospectively support the many previous investigations that employed the
Penrose-Banzhaf or Shapley-Shubik indices of binary voting power also in contexts
where collective choices are not from the start simple ‘yes’-or-‘no’ affairs, but at some
stage require a selection from multiple candidates, motions or bills prior to an official
vote.

The results in columns (1) and (2) of Table 6 confirm the inferences we drew from

23The respective power index computations assume binary decisions by shareholders i = 1, . . . , 10
with a 50% majority quota. Dedicated power measures for non-binary decisions (Kurz et al. 2021)
are more challenging to compute and scale down β2, β3 and β4 because some rule effects are captured
already. Nevertheless, coefficients β2, β3 and β4 remain statistically different from zero.

24As a robustness check, we alternatively control for the holding percentage of shareholder i and/or
the ownership concentration among shareholders j , i measured by the Herfindahl index (cf. Demsetz
and Lehn 1985 and Ajinkya, Bhojraj and Sengupta 2005). The model then loses some explanatory
power but results are qualitatively unchanged. Including shareholder rank fixed effects does not alter
our conclusions either, nor does using tobit regressions for censored dependent variables.
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Table 6: Multivariate regression results

Dependent variable: Success index for given preference distribution
ARI TCI

IC IAC IC IAC
(1) (2) (3) (4)

Variable Coefficient Coefficient Coefficient Coefficient
PBI 0.4950*** 0.6166***
SSI 0.3249*** 0.4195***

Borda -0.0108*** -0.0180***
Copeland -0.0068*** -0.0080*** -0.0126*** -0.0154***
Plurality -0.0124*** -0.0130***

PluralityRunoff -0.0071*** -0.0098*** -0.0065*** -0.0078***
Intercept 0.5078*** 0.6528*** 0.3356*** 0.5210***

Adjusted R2 0.9924 0.8644 0.9885 0.8797
n 3 560 3 680 3 560 3 680

Note: This table presents the coefficients and significance levels of our four OLS regres-
sions with heteroscedasticity robust standard errors (White 1980). The superscripts *,
** and *** represent significance levels of 10%, 5% and 1% (two-tailed t-tests), respec-
tively. We estimate the following regression models: VotingSuccessir = α0 + β1PowerIndexi +∑4

j=2 β jVotingRulesr + εir where VotingRules are Copeland, Plurality or PluralityRunoff indi-
cators in columns (1) and (2) and Borda, Copeland or PluralityRunoff indicators in columns
(3) and (4). The dependent variable VotingSuccess is the shareholder’s success index ARI in
columns (1) and (2) and TCI in columns (3) and (4), respectively. The success indexes are
calculated assuming IC in columns (1) and (3) and IAC in columns (2) and (4) as proba-
bility distribution over preference profiles. Consequently, the Penrose-Banzhaf index (PBI)
represents the PowerIndex in columns (1) and (3) the Shapley-Shubik index (SSI) is used in
columns (2) and (4).

Table 5 and Figure 9: individual voting success as measured by ARI is significantly
lower when the voting rules Copeland, Plurality or PluralityRunoff are applied instead
of Borda rule, which is the baseline in these regressions. Similarly, columns (3) and
(4) show significantly lower success indexes for Borda, Copeland and PluralityRunoff
in comparison to the benchmark plurality rule considering TCI. All differences are
statistically significant at the 1% level.

Using the optimal voting rules on average leads to 1 to 3% higher success rates.
This may not seem a big difference but in a majority of cases the tenth largest share-
holders (with mean holdings of 1.14%) would benefit more from switching from the
worst to the best voting rule than from switching their holdings with the respective
seventh largest shareholders (with mean holdings of 1.78%). Considering only IAC,
the effects are yet more pronounced: the tenth largest shareholders in more than 80%
(50%) of the firms would benefit more from a rule change than from swapping their
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holdings with those of the sixth (fifth) largest shareholders.25 Recall also that a priori
figures include many preference configurations with broad agreement among voters.
If, a posteriori, one focuses on those situations where disagreement has called for an
explicit act of voting, the success gap between the individually best vs. worst rule
can be significantly higher.

7 Concluding Remarks

The key takeaway from this investigation is that the adopted voting procedure mat-
ters from an a priori and day-to-day perspective – not only in selected textbook
examples or under specific historical circumstances (cf. Leininger 1993, Tabarrok
and Spector 1999, Maskin and Sen 2016, but also Darmann and Klamler 2023 or
Lachat and Laslier 2024). Voting rules entail different prospects of seeing one’s most
preferred option win and a different expected personal ranking of collective out-
comes. This can be quantified, predicted for one’s preferred benchmark distribution
of preferences and reacted to in the design of by-laws, statutes or other governance
instruments.

Of course, our findings have practical and theoretical limitations. First, a wide
range of voting rules exist, and we have focused on just four. For instance, after a
plurality vote without a majority winner, one may delete only the alternative with
the lowest support and vote again; a chairperson may put just specific pairwise com-
parisons on the agenda; there are many scoring methods that evaluate the candidate
positions in individual preference rankings differently from Borda or plurality. The
rules investigated here include prominent representatives from the three main classes
of single-winner methods (Condorcet methods, scoring rules and runoff rules), but
there are ample opportunities for follow-up work. The Borda rule is probably the
least frequently used of the voting procedures that we have looked at. It comes with
particularly compelling axiomatic properties, however,26 and Ambuehl and Bern-

25Considering Apple Inc., for instance, the ARI10-gain of 0.6619−0.6497 = 0.0121 from replacing
plurality rule by Borda rule exceeds the difference between ARI10 = 0.6497 and ARI5 = 0.6616 under
plurality rule, which reflect holdings of 0.66% vs. 2.07%. An acquisition of 2.07%−0.66% = 1.41% of
Apple stock would have cost around USD 38 billion in Jan. 2022.

26Borda rule is closely connected to both May’s and Arrow’s classical axioms of rational collective
choice. As discovered by Maskin (2024), the rule is unique in satisfying anonymity, neutrality,
responsiveness, unrestricted domain, a Pareto ranking condition and modified independence of
irrelevant alternatives. This comes on top of the desirable consistency properties that distinguish
Borda rule from, e.g., pairwise voting (cf. Young 1974).
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heim (2024) found that Borda winners have better ex post support than plurality
or pairwise winners in allocation experiments. Our findings that Borda rule yields
higher individual ranks also for practically relevant asymmetry and links success
more transparently to voting weights strengthens the case for using it more.

Second, we are aware that very many votes by boards or general assemblies
are ‘yes’-or-‘no’ decisions with little dissent. The existing sets of options are often
whittled down to singletons without documented votes long before any official
shareholder or board meeting. However, decisions can involve disagreement. Then
it is advantageous to know how different procedures translate into different success
expectations. The informal mechanisms that help to generate a single consensual
proposal can implicitly involve multiple pairwise comparisons, a runoff-like focus
on the two options with the most initial support or the accumulation of individual
scores. In such cases, using the right method can pay off individually and raise
aggregate success just as much as with explicit votes.

Third, we have focused on sincere voting. This is a restrictive assumption de-
spite relatively scant empirical support for its most compelling alternative: strategic
voting. Assuming the latter comes with a pervasive non-uniqueness of the result-
ing voting outcomes and entails limitations of its own. Still, we present a detailed
investigation of strategic voting equilibria in Appendix B. It shows that many of the
weight-specific maximizers identified in Section 5 continue to maximize success at
least for one plausible way to select from non-singleton sets of equilibria.

Notwithstanding these limitations, our analysis is a reminder that deciding by
vote is more complex than meets the eye. Accounting for the combinatoric properties
of weighted voting is non-trivial already for binary options. Assessing which proce-
dure best reflects the preferences of an individual for more than two alternatives is
yet more cumbersome, but rewarding.
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Appendices

Appendix A: Robustness to Random Tie Breaking

Lexicographic tie breaking assumes some fixed ordering a1 <L a2 <L . . . <L am of
the alternatives such that if options ai1 , . . . , aik receive the same plurality score (Borda
score, etc.) at a given preference profile P then ai∗ with i∗ = min{i1, . . . , ik} is selected
as the unique winner r|w(P).

To demonstrate that the tie-breaking assumption is innocuous for our analysis,
consider the set-valued version of a given voting rule r like rP (rB, etc.). This maps each
preference profile P to the non-empty set r̂|w(P) = A∗ ⊆ A of all alternatives that
have the highest plurality score (Borda score, etc.). In contrast to our point-valued
baseline, the respective set-valued version of rP (rB, etc.) is neutral, i.e., r̂ = r̂P (r̂B,
etc.) satisfies r̂(ρ(P)) = ρ(r̂(P)) for any permutation ρ : A→ A and P ∈ P(A)n.

Now take an arbitrary alternative-based tie breaking method. It can be described
by a family {βB}B∈2A∖∅ of probability distributions that assign winning probabilities
βB(a) to all a ∈ B with

∑
a∈B βB(a) = 1 for any set of tied alternatives B. We will write

{βB} for short. Lexicographic tie breaking {βlex.
B } amounts to βlex.

B (a) = 1 iff a is the
lexicographically minimal element of B. A popular alternative is uniform random tie
breaking {βuni.

B } where βuni.
B (a) = 1/|B| for any a ∈ B. A given method {βB} might also

apply uniform tie breaking if |B| = 2, lexicographic tie breaking if |B| = 3, prescribe
particular B-specific probabilities if |B| = 4, etc. All we require is that preferences affect
the outcome via the baseline voting rule while tie break probabilities are independent
of P.27

For a given success function σ : A × P(A) → R let σ’s extension to {βB}-tie breaking
σ̂ : 2A

× P(A)→ R be defined by

σ̂(B,Pi) :=
∑
a∗∈B

βB(a∗)σ(a∗,Pi). (10)

This equals the expectation of σ(a∗,Pi) under the pertinent tie break probabilities.
With these definitions we have

Proposition 3. Consider voters N = {1, . . . ,n}with voting weights w = (w1, . . . ,wn) whose
preferences over A = {a1, . . . , am} are drawn from a probability distribution on P(A)n that
satisfies Pr(P) = Pr(ρ(P)) for any permutation ρ : A→ A. Let r̂|w be the neutral set-valued

27Making tie break probabilities a function of the preferences of, e.g., the committee’s chairperson
or the largest shareholder would shift the distribution of a priori success in the expected direction.
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version of r|w and σ̂ be the extension of success function σ to {βB}-tie breaking. Then

E[σ(r|w(P),Pi)] = E[σ̂(r̂|w(P),Pi)].

In particular, player i’s top choice or average rank success under lexicographic tie breaking,
E[σ(r|w(P),Pi)], and the respective success under any other alternative-based tie breaking
method, E[σ̂(r̂|w(P),Pi)], are identical.

Proof. For any non-empty subset B ⊆ A of alternatives, denote the set of preference
profiles that yield a tie between the alternatives in B by

PB :=
{
P ∈ P(A)n : r̂|w(P) = B

}
. (11)

Also denote the permutations of A that only switch elements of B ⊆ A by

S
B :=

{
ρ : A→ A : [a < B⇒ ρ(a) = a]

}
. (12)

If P ∈ PB, then neutrality of r̂|w implies that also P′ = ρ(P) ∈ PB for any ρ ∈ SB. Hence
PB can be partitioned into k(B) = |PB |/|B|! subsets PB,1, . . . ,PB,k(B) that each contain |B|!
profiles which differ only by permutations of B’s elements. For any such partition
element PB, j let us fix a ‘representative’ profile PB, j

∈ PB, j that ranks B’s elements
B = {ar1 , . . . , ar|B|} from player i’s perspective by ar1P

B, j
i ar2P

B, j
i . . .P

B, j
i ar|B| .

Player i’s success σ̂(r̂|w(P),Pi) for P ∈ PB, j equals

σ̂(B,Pi) = σ̂(B,P
B, j
i ) = βB(ar1)σ(ar1 ,P

B, j
i )+ βB(ar2)σ(ar2 ,P

B, j
i )+ . . .+ βB(ar|B|)σ(ar|B| ,P

B, j
i ) (13)

if P = PB, j. For the related profile P′ ∈ PB, j where, e.g., ar1 and ar2 are permuted, i’s
success evaluates to

σ̂(B,P′i) = βB(ar1)σ(ar1 ,P
′

i) + βB(ar2)σ(ar2 ,P
′

i) + . . . + βB(ar|B|)σ(ar|B| ,P
′

i)

= βB(ar1)σ(ar2 ,P
B, j
i ) + βB(ar2)σ(ar1 ,P

B, j
i ) + . . . + βB(ar|B|)σ(ar|B| ,P

B, j
i ) (14)

and, more generally, we have σ̂(B,P′i) =
∑

a∈B βB(a)σ(ρ−1(a),PB, j
i ) if P′ = ρ(PB, j).

This implies∑
P∈PB, j

Pr(P)σ̂(r̂|w(P),Pi) =
∑
ρ∈SB

Pr(ρ(PB, j))
∑
a∈B

βB(a)σ(ρ−1(a),PB, j
i )

= Pr(PB, j)
∑
a∈B

βB(a)
∑
ρ∈SB

σ(ρ−1(a),PB, j
i )

= Pr(PB, j)
∑
a∈B

βB(a)
∑
ã∈B

|B|!
|B|
σ(ã,PB, j

i ) (15)

= Pr(PB, j)
∑
a∈B

|B|!
|B|
σ(a,PB, j

i ).
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The second equality exploits that Pr(P) = Pr(ρ(P)) for any permutation ρ : A → A
and changes the order of summation. The third equality uses that, as we go over
all permutations of B’s elements supposing a given a prevails in the tie break, a is
ranked in the location that ã = ρ−1(a) has in reference ranking PB, j

i exactly |B|!/|B| times
for each ã ∈ B. The final equality just replaces the expectation of a constant by this
constant and renames ã to a.

We therefore have

E[σ̂(r̂|w(P),Pi)] =
∑

P∈P(A)n

Pr(P)σ̂(r̂|w(P),Pi)

=
∑
B⊆A

k(B)∑
j=1

∑
P∈PB, j

Pr(P)σ̂(r̂|w(P),Pi) (16)

=
∑
B⊆A

k(B)∑
j=1

Pr(PB, j)
∑
a∈B

|B|!
|B|
σ(a,PB, j

i )

independently of the specific family {βB} of tie break probabilities. A priori success
under tie breaking method {βB} hence equals a priori success under lexicographic tie
breaking {βlex.

B }, which is E[σ(r|w(P),Pi)].
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Appendix B: Robustness to Strategic Voting

The main analysis has assumed voters to express their preferences without strate-
gic misrepresentation. From a theoretical point of view, this is restrictive: unless
some voter is a dictator, the preference profiles for which sincere voting is a Nash
equilibrium are a strict subset of preference domain P(A)n (cf. Gibbard 1973 and
Satterthwaite 1975).28

Strategic voting is arguably less problematic in practice than in theory. It requires
information about other voters’ preferences that is often unavailable or difficult to
obtain. Manipulation attempts can have negative reputation effects; they may fail
or even backfire. It can also be computationally expensive for a voter to evaluate
which outcomes are achievable through which preference misrepresentation. This
holds already if everyone else votes sincerely29 and further complexity is added if,
potentially, other voters misrepresent their preferences too. The subjects in experi-
ments by van der Straeten, Laslier, Sauger and Blais (2010) voted strategically only
if the required computations were elementary. Other authors made similar observa-
tions (see, e.g., Kube and Puppe 2009, Groseclose and Milyo 2010, Pons and Tricaud
2018, Abeler, Nosenzo and Raymond 2019 or Baujard and Lebon 2022). Even from a
theory perspective it is not clear if the assumptions for a particular strategic voting
equilibrium are less restrictive than for sincere voting: players must be aware of the
possibility to manipulate; their costs of exercising this option must be small; and they
must somehow come to correctly anticipate their adversaries’ strategies even when
there are many alternative equilibria.

It is nonetheless worthwhile to assess the robustness of our success compar-
isons with respect to strategic voting. The key difficulty in doing this is non-
uniqueness of equilibrium. If, for instance, our stylized shareholders with weights
w = (45%, 35%, 20%) choose between candidates A = {a, b, c} and have sincere pref-
erences P = (acb, bca, cba), there exist 40 equilibria in pure strategies under rP and
rPR, 39 under rC and 14 under rB.30 If we eliminate weakly dominated strategies

28For instance, in Table 3’s example with w = (45%, 35%, 20%), at least one voter has an incentive
to misreport her preferences for 36 (24, 24, 72) out of the 216 preference profiles for rP (rPR, rC, rB).

29Weighted votes using rB and rPR are NP-hard to manipulate for three or more alternatives, rC for
at least four alternatives. The manipulation problem has polynomial complexity for any number of
alternatives only for rP. See the survey by Conitzer and Walsh (2016).

30The numbers refer to a normal-form game with strategy sets Si = {abc, . . . , cba} in which each
player i ∈ N has complete information about r and P. For instance, strategy s1 = cab by voter 1 in
a game where P1 = acb means that 1 acts like a sincere voter with preferences cab: under rPR, 1 first
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(a) rP (b) rPR

(c) rC (d) rB

Figure A-1: Distribution of the number of Nash equilibria in undominated pure strategies
for w = (45%, 35%, 20%), m = 3 and P ∈ P(A)n

(see Farquharson 1969), there are still 16, 8, 3 and 6 equilibria to choose from. Fig-
ure A-1 reports the distribution of the numbers of corresponding equilibria across
the (3!)3 = 216 preference profiles P. For most P, there are many equilibrium strategy
choices to select from as a theorist – and to coordinate between as actual voters.
Success under strategic voting is highly contingent on one’s selection strategy and
coordination skills.

This holds for weight distributions other than w = (45%, 35%, 20%), too. We

votes for c and then for c (a) if there is a runoff (not) involving option c. This would, e.g., be better for
1 than the sincere strategy s◦1 = acb if 2 and 3 play s2 = bca and s3 = cba. We disregard mixed-strategy
equilibria because they have weak foundations and require an extension of P to lotteries.
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have computed the sets of pure-strategy Nash equilibria for all profiles P for n = 3
players, m = 3 options and all non-dictatorial weight equivalence classes of rP, rPR,
rC and rB. We checked in each case if (i) sincere voting is a Nash equilibrium or if
(ii) the winning alternative is the same as under sincere voting in some equilibrium
involving undominated strategies. The results are summarized at the end of this
Appendix in Tables A-3 to A-4.31 The share of profiles P in which the sincere voting
outcome r|w(P), and hence success σ(r|w(P),Pi), are in sense (i) or (ii) consistent with
strategic voters often exceeds 90%. It falls below 80% only for what essentially are
2-player tie-breaking games. Hence, the conclusions from the analysis of sincere
voting are unlikely to be far off.

This can be made more precise by, for instance, adopting a cost of lying-based
selection criterion and then evaluating individual success in the corresponding equi-
librium outcomes. Specifically, among multiple strategic voting equilibria, let us
select the one that requires the lowest number of pairwise preference misrepresen-
tations, i.e., we identify the equilibrium strategy profile s∗ ∈ P(A)n with minimal
Kemeny distance to the sincere profile s◦ = P. Then we compute player i’s success
σ(r|w(s∗),Pi) at P and obtain the respective a priori success TCI∗i (·) and ARI∗i (·) under
strategic voting by taking expectations with respect to P.32

Figure A-2 shows the corresponding maximizers of TCI∗1(·) and ARI∗1(·) for strategic
voters under the IC and IAC benchmark distributions for n = m = 3 in direct analogy
to the results for sincere voters in Figure 6. There are visible differences. However, in
most cases, at least one of the previously success-maximizing rules is still a success
maximizer. Strategic voting thus helps to select between rules that promise equal
a priori success under sincere voting. A few areas where rC is the maximizer under
sincere voting but now rPR maximizes player 1’s success, and vice versa, represent
exceptions to this. Furthermore, in some cases where player 1 is a dummy under
rC, rP and rPR but not under rB (i.e., w j ∈ (50%, 66.67%) for j = 2 or 3), Borda rule
minimizes player 1’s success (cf. the middle blue parts inside the mainly cyan colored
area). The latter is caused by Pareto-inefficient equilibria under rB, which reduce
player 1’s success below the dummy level guaranteed by rC, rP and rPR. This once
more highlights the equilibrium selection problem.

31We indicate each equivalence class by an integer weight distribution with minimum sum. Our
example w = (45%, 35%, 20%) is equivalent to w′ = [3, 2, 2] under rP, to w′ = [2, 2, 1] under rPR, to
w′ = [1, 1, 1] under rC and to w′ = [5, 4, 2] under rB (cf. Kurz et al. 2020).

32If several equilibrium strategy profiles s∗ minimize the Kemeny distance to P, we pick at random
and evaluate the expectation of σ(r|w(s∗),Pi). For combinations of r|w and P where no pure strategy
equilibrium exists, we maintain the sincere voting assumption.
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Figure A-2: Maximizers of ARI∗1 and TCI∗1 in strategic voting equilibria with minimal Ke-
meny distance to P when n = m = 3
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As a complementing robustness check, we considered voting under uncertainty
(see, e.g., Majumdar and Sen 2004, Ángel Ballester and Rey-Biel 2009 or Lu, Tang,
Procaccia and Boutilier 2012) and verified if a sincere vote would maximize the
expected utility of a voter with ui(a) = s̃(a,Pi) who – lacking better information –
assumes that preferences of the others are independent, distributed uniformly and
expressed truthfully.33 We checked for each voter i with any fixed preferences Pi if,
writing P−i = (P1, . . . ,Pi−1,Pi+1, . . . ,Pn),∑

P−i∈P(A)n−1

Pr(P−i) · s̃(r|w(Pi,P−i),Pi) ≥
∑

P−i∈P(A)n−1

Pr(P−i) · s̃(r|w(P′i ,P−i),Pi) ∀P′i , Pi. (17)

This inequality happens to hold for all voters i and preferences Pi in all plurality and
plurality runoff equivalence classes when n = m = 3. It is also satisfied for 42 out of
the 51 Borda equivalence classes and for 3 out of the 4 Copeland classes, where the
remaining 9 and 1 represent non-generic distributions (i.e., locally isolated points or
lines in the simplex).34 In other words: sincere voting is typically the best strategy
for a voter who applies the principle of insufficient reason to the unknown actions
of other players. If we take a virtual walk through the simplex in Figure 1 and
enumerate all (1 500 + 2)!/(1 500! · 2!) = 1 127 251 games with non-negative integer
voting weights w = (w1,w2,w3) such that w1 + w2 + w3 = 1 500, the proportion of
games where sincere voting is optimal in this sense – i.e., strategy si = Pi satisfies
inequality (17) for all i and Pi – evaluates to either ≈ 99% or 100% under rP, rPR, rC

and rB for both m = 3 or 4 alternatives.
33This is a special case of the model by Majumdar and Sen (2004). Knightian preference uncertainty

was earlier considered by Moulin (1981).
34For m = 4 options, deviating from truthful voting does not pay in 3 of the 6 plurality classes, 4 of

the 7 plurality runoff classes, 3 of the 4 Copeland classes and 354 of the 505 Borda classes.
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Table A-1: Number and properties of undominated Nash equilibria under plurality rule

rP
|w Distribution of # NE

for P ∈ P(A)n

# different
NE outcomes
for P ∈ P(A)n

Share of P
s.t. sincere
voting is a

NE

Share of P s.t.
sincere

outcome is a
NE outcome

1 2 3

[1,1,0]

0 8 16 24 32 40 48
0

20

40

60

80

100

120

140

160

180

210 6 0 192/216
≈ 0.89

192/216
≈ 0.89

[1,1,1]

0 8 16 24 32 40 48
0

20

40

60

80

100

120

140

160

180

178 38 0 180/216
≈ 0.83

180/216
≈ 0.83

[2,1,1]

0 8 16 24 32 40 48
0

20

40

60

80

100

120

140

160

180

197 19 0 192/216
≈ 0.89

196/216
≈ 0.91

[2,2,1]

0 8 16 24 32 40 48
0

20

40

60

80

100

120

140

160

180

148 68 0 180/216
≈ 0.83

188/216
≈ 0.87

[3,2,2]

0 8 16 24 32 40 48
0

20

40

60

80

100

120

140

160

180

132 84 0 180/216
≈ 0.83

204/216
≈ 0.94

Note: This table reports the number and properties of Nash equilibria (NE) in undominated pure
strategies for all five non-dictatorial rP equivalence classes for n = m = 3 and all P ∈ P(A)3.
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Table A-2: Number and properties of undom. Nash equilibria under plurality runoff rule

rPR
|w Distribution of # NE

for P ∈ P(A)n

# different
NE outcomes
for P ∈ P(A)n

Share of P
s.t. sincere
voting is a

NE

Share of P s.t.
sincere

outcome is a
NE outcome

1 2 3

[1,1,0]

0 8 16 24 32 40 48
0

20

40

60

80

100

120

140

160

180

210 6 0 192/216
≈ 0.89

192/216
≈ 0.89

[1,1,1]

0 8 16 24 32 40 48
0

20

40

60

80

100

120

140

160

180

196 20 0 192/216
≈ 0.89

192/216
≈ 0.89

[2,1,1]

0 8 16 24 32 40 48
0

20

40

60

80

100

120

140

160

180

194 22 0 198/216
≈ 0.92

202/216
≈ 0.94

[2,2,1]

0 8 16 24 32 40 48
0

20

40

60

80

100

120

140

160

180

186 30 0 192/216
≈ 0.89

192/216
≈ 0.89

[3,2,1]

0 8 16 24 32 40 48
0

20

40

60

80

100

120

140

160

180

208 8 0 196/216
≈ 0.91

196/216
≈ 0.91

[3,2,2]

0 8 16 24 32 40 48
0

20

40

60

80

100

120

140

160

180

185 31 0 192/216
≈ 0.89

196/216
≈ 0.91

Note: This table reports the number and properties of Nash equilibria (NE) in undominated pure
strategies for all six non-dictatorial rPR equivalence classes for n = m = 3 and all P ∈ P(A)3.



Table A-3: Number and properties of undominated Nash equilibria under Copeland rule

rC
|w Distribution of # NE

for P ∈ P(A)n

# different
NE outcomes
for P ∈ P(A)n

Share of P
s.t. sincere
voting is a

NE

Share of P s.t.
sincere

outcome is a
NE outcome

1 2 3

[1,1,0]

0 8 16 24 32 40 48
0

20

40

60

80

100

120

140

160

180

168 0 0 132/216
≈ 0.61

156/216
≈ 0.72

[1,1,1]

0 8 16 24 32 40 48
0

20

40

60

80

100

120

140

160

180

178 38 0 192/216
≈ 0.89

204/216
≈ 0.94

[2,1,1]

0 8 16 24 32 40 48
0

20

40

60

80

100

120

140

160

180

149 67 0 167/216
≈ 0.77

210/216
≈ 0.97

Note: This table reports the number and properties of Nash equilibria (NE) in undominated pure
strategies for all three non-dictatorial rC equivalence classes for n = m = 3 and all possible preference
configurations P ∈ P(A)3. The outcome distribution does not sum up to 216 for w = [1, 1, 0] because
there is no pure NE for 48 profiles of sincere preferences.

43



Table A-4: Number and properties of undom. Nash equilibria under Borda rule

rB
|w Average

# NE

# different
NE outcomes for

P ∈ P(A)n

Share of P s.t. sincere
voting is a NE

Share of P s.t. sincere
outcome is a NE outcome

1 2 3
[1,1,0] 13.50 168 0 0 132/216 ≈ 0.61 156/216 ≈ 0.72
[1,1,1] 11.96 69 141 6 165/216 ≈ 0.76 216/216 = 1
[2,1,0] 19.83 192 0 0 162/216 ≈ 0.75 186/216 ≈ 0.86
[2,1,1] 7.75 171 45 0 176/216 ≈ 0.81 208/216 ≈ 0.96
[2,2,1] 8.60 131 71 6 144/216 ≈ 0.67 198/216 ≈ 0.92
[3,1,1] 13.72 204 12 0 178/216 ≈ 0.82 208/216 ≈ 0.96
[3,2,0] 18.00 144 0 0 108/216 ≈ 0.50 144/216 ≈ 0.67
[3,2,1] 9.09 169 47 0 161/216 ≈ 0.75 208/216 ≈ 0.96
[4,1,1] 9.22 216 0 0 201/216 ≈ 0.93 213/216 ≈ 0.99
[3,2,2] 9.96 139 75 2 169/216 ≈ 0.78 204/216 ≈ 0.94
[3,3,1] 4.06 156 12 0 132/216 ≈ 0.61 168/216 ≈ 0.78
[4,2,1] 8.54 194 18 0 168/216 ≈ 0.78 203/216 ≈ 0.94
[3,3,2] 12.53 66 138 12 156/216 ≈ 0.72 216/216 = 1
[4,3,1] 10.06 179 35 0 138/216 ≈ 0.64 196/216 ≈ 0.91
[5,2,1] 9.72 212 0 0 174/216 ≈ 0.81 202/216 ≈ 0.94
[4,3,2] 7.38 147 65 0 155/216 ≈ 0.72 201/216 ≈ 0.93
[5,2,2] 12.06 180 36 0 174/216 ≈ 0.81 216/216 = 1
[5,3,1] 11.50 200 16 0 150/216 ≈ 0.69 198/216 ≈ 0.92
[4,3,3] 13.56 66 138 12 174/216 ≈ 0.81 216/216 = 1
[5,4,1] 7.41 174 22 0 130/216 ≈ 0.60 180/216 ≈ 0.83
[6,3,1] 4.50 192 0 0 162/216 ≈ 0.75 186/216 ≈ 0.86
[5,3,3] 6.56 132 84 0 168/216 ≈ 0.78 210/216 ≈ 0.97
[5,4,2] 12.06 126 90 0 144/216 ≈ 0.67 207/216 ≈ 0.96
[6,4,1] 7.56 186 10 0 123/216 ≈ 0.57 176/216 ≈ 0.81
[7,2,2] 15.50 216 0 0 186/216 ≈ 0.86 210/216 ≈ 0.97
[5,4,3] 12.24 100 110 6 159/216 ≈ 0.74 210/216 ≈ 0.97
[7,4,1] 7.78 196 0 0 144/216 ≈ 0.67 182/216 ≈ 0.84
[6,5,2] 10.07 156 51 0 138/216 ≈ 0.64 195/216 ≈ 0.90
[7,5,1] 6.82 163 9 0 114/216 ≈ 0.53 160/216 ≈ 0.74
[6,5,3] 12.06 126 90 0 144/216 ≈ 0.67 204/216 ≈ 0.94
[7,5,2] 10.60 170 46 0 145/216 ≈ 0.67 203/216 ≈ 0.94
[8,5,1] 7.75 172 0 0 117/216 ≈ 0.54 161/216 ≈ 0.75
[6,5,4] 12.58 76 130 10 165/216 ≈ 0.76 214/216 ≈ 0.99
[7,5,3] 9.21 132 84 0 156/216 ≈ 0.72 208/216 ≈ 0.96
[7,6,2] 6.00 163 17 0 132/216 ≈ 0.61 174/216 ≈ 0.81
[8,5,2] 10.94 186 30 0 156/216 ≈ 0.72 207/216 ≈ 0.96
[7,5,4] 6.08 162 42 0 165/216 ≈ 0.76 197/216 ≈ 0.91
[7,6,4] 12.29 93 116 7 150/216 ≈ 0.69 212/216 ≈ 0.98
[8,6,3] 12.06 126 90 0 144/216 ≈ 0.67 210/216 ≈ 0.97
[9,6,2] 9.83 192 24 0 138/216 ≈ 0.64 198/216 ≈ 0.92
[8,7,3] 8.18 151 48 0 138/216 ≈ 0.64 189/216 ≈ 0.88
[8,6,5] 9.35 133 74 5 168/216 ≈ 0.78 204/216 ≈ 0.94
[10,7,2] 9.13 187 21 0 129/216 ≈ 0.60 188/216 ≈ 0.87
[11,7,2] 10.17 196 12 0 132/216 ≈ 0.61 187/216 ≈ 0.87
[9,7,5] 8.10 149 55 0 153/216 ≈ 0.71 193/216 ≈ 0.89
[10,8,3] 10.06 158 54 0 138/216 ≈ 0.64 198/216 ≈ 0.92
[11,8,2] 8.42 174 18 0 120/216 ≈ 0.56 174/216 ≈ 0.81
[11,9,3] 7.94 168 24 0 132/216 ≈ 0.61 180/216 ≈ 0.83
[13,8,2] 10.50 192 0 0 126/216 ≈ 0.58 174/216 ≈ 0.81
[12,9,7] 4.83 180 12 0 162/216 ≈ 0.75 186/216 ≈ 0.86

Note: This table reports the number and properties of Nash equilibria (NE) in undominated pure
strategies for all 50 non-dictatorial rB equivalence classes for n = m = 3 and all P ∈ P(A)3. If the
outcome distribution does not sum up to 216, there are some P for which no pure NE exists.
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