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Abstract: Individual contributions by infringing firms to the compensation of cartel victims must
reflect their “relative responsibility for the harm caused” according to EU legislation. Several studies
have argued that the theoretically best way to operationalize this norm is to apply the Shapley
value to an equilibrium model of cartel prices. Because calibrating such a model is demanding,
legal practitioners prefer workarounds based on market shares. Relative sales, revenues, and
profits however fail to reflect causal links between individual behavior and prices. We develop
a pragmatic alternative: use simple voting games to describe which cartel configurations can(not)
cause significant price increases in an approximate, dichotomous way; then compute the Shapley-
Shubik index. Simulations for a variety of market scenarios document that this captures relative
responsibility better than market share heuristics can.
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1. Introduction

Simple voting games are an important subclass of coalitional games with transferable
utility (TU games; cf. [1] (Chapter 16)). They partition the set of all possible coalitions
among a given set N of players into two categories: a coalition S ⊆ N is either ‘winning’,
which is denoted by assigning worth v(S) = 1 to S, or ‘losing’ (v(S) = 0). These games
received an entire chapter’s attention by von Neumann and Morgenstern [2] (Chapter 10);
Taylor and Zwicker [3] devoted a full-length monograph to them. In theoretical analysis,
they have played a key role for the axiomatic characterization of solutions ever since
Shapley [4] introduced his value on the vector space of TU games via a suitable basis of
simple (voting) games. Investigation of their properties–such as the dimensionality of
representations of a given characteristic function v : S 7→ {0, 1} by means of voting weight
vectors and thresholds (see, e.g., [5–7])–still goes on.

The long list of practical applications of simple games is dominated by voting bodies
such as the US Electoral College, the Board of Governors or the Board of Directors of the
International Monetary Fund, the EU Council of Ministers, shareholder meetings, etc. The
typical concern is the distribution of a priori voting power in the respective institution.1 The
goal of this article is to propose a very different and promising new domain of application.

We will argue that simple games can serve as useful approximations of more compli-
cated TU games in the context of proportioning cartel damages.2 Let us first provide some
background on the pertinent legal environment and economic problem before we develop
our proposal.

Around a decade ago, the European Commission passed a Directive on Antitrust
Damages Actions (2014/104/EU – [12]) in order to reduce legal and procedural hurdles
for cartel victims to reclaim antitrust damages. It was motivated by the observation
that “. . . total annual cost for hardcore cartels in the EU can be estimated to range from
approximately e25 billion [. . . ] to approximately e69 billion. . . ” and only a small share
of accrued damages were later reclaimed (see SWD/2013/203/Final, recitals 65, 67). The
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Directive clarified that (i) when a detected cartel is litigated in the EU, all co-infringers are
jointly and severally liable for the entire harm; and (ii) if a given infringer compensates a
victim, other infringers may be required to bear part of the payment.

This means that a customer who has suffered cartel-related price overcharges on its
purchases can sue any cartel member for any desired share of its total claim to compensation–
independently of whether the pertinent purchases were made from this or another firm.
The co-defendant that is sued and convicted to pay compensation to a victim can after-
wards force its former cartel partners to contribute “. . . if it has paid more compensation than
its share” (Directive 2014/104/EU, recital 37). Importantly, the corresponding internal share
in the compensation of a victim must reflect the “. . . relative responsibility for the harm caused
by the infringement of competition law” according to Article 11(5) of the Directive.3

With cartel damages and claims to compensation amounting to billions of euros,
operationalization of this legal norm and determination of the “relative responsibility
for the harm caused” has significant practical relevance. Proposals to invoke the Shapley
value of appropriately defined TU games were made early on by [13,14]. The underlying
reasoning and consequences have been elaborated by [15].

The arguments for using the Shapley value revolve around several properties that
a responsibility-based allocation should have: it is almost trivial, for instance, that all of
the compensation granted to a given victim must somehow be allocated among the cartel
members. This translates into efficiency of a value in cooperative game theory. A firm’s
individual share of compensation should not vary with the choice of currency nor unit
of account, nor depend on whether the compensation payment included interest or if
multiple damages are compensated simultaneously or sequentially (reflected by linearity).
In order for firms’ shares to reflect legal and economic responsibility for harm, the causal
connections between an individual firm’s cartel membership and the size of a customer’s
damage are crucial. They ought to be the shares’ only determinant. This formally translates
into the marginality requirement of Young [16]. Moreover, firms whose cartel membership
has identical effects on a victim’s damage should contribute the same and firms whose
membership can be ruled out to have affected the relevant price should have a share of
zero (symmetry and null-player properties).

Well-known results by [4,16] then pin down the Shapley value as the right tool for
responsibility-based proportioning: it is the only method that can simultaneously satisfy the
indicated properties.4 Desirability of the properties and the corresponding mathematical
conclusion have been endorsed by legal practitioners. For instance, [20] (recital 123)
holds that “Shapley values consistently deliver an apportionment according to the relative
responsibility for the harm”.

The big caveat, however, is that application of the Shapley value necessitates the quan-
tification of counterfactual damages, i.e., estimates of which harm would have obtained
had one or several of the cartel members refused to participate in the infringement of com-
petition law. Otherwise, the marginal contributions to harm that determine responsibility
are not defined.

So a practitioner wishing to apply the Shapley value to the compensation for a given
price overcharge must get hold of a sufficiently rich panel of market data to estimate an
economic model that allows to quantify counterfactual harms. Successfully setting up
such model is not inconceivable (see, e.g., [21]) and corresponding market simulation
techniques are well-established in other areas of competition policy (mainly control of
mergers–e.g., [22]). Still it is hard to dispute the assessment by Bornemann [20] (recital 124)
that “. . . for almost all real-life cases, such a data panel will be exceedingly difficult or
downright impossible to obtain”.

So it is not surprising that various ad hoc proportioning heuristics have been suggested.
For instance, [23] early on argued that an allocation by “. . . sales of the product during the
conspiracy . . . ” could be an appropriate benchmark. This has been taken up in Portugal
where co-defendants are liable in proportion to average cartel-time sales in the affected
market [20] (recital 107). Other ad hoc proposals involve sales during a competitive period
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preceding or following cartel operations, an allocation by (pre-, post-, or cartel period)
revenue shares or profit shares, an equal division by heads, and so on. [15] show that none
of these workarounds dominates the others: any given one may uniquely come close to
the relative responsibilities identified by the Shapley value in one market scenario but
perform very badly in another scenario. The relative accuracy of the heuristics varies in the
asymmetry of firm sizes, costs, intensity of product differentiation, etc. Even the respective
‘best’ among the considered heuristics is in some cases very far off. Our investigation is
therefore motivated by two questions: First, how can we pragmatically approximate the
marginal contributions to harm when a precise market model is too difficult to construct?
Second, how accurate are the resulting inferences on relative responsibilities compared to
working with known structural parameters and compared to ad hoc rules of thumb?

After illustrating the damage proportioning problem by a numerical example (Section 2)
and setting out some notation (Section 3), we will propose the dichotomous approximation
of damages by simple voting games–and thus of marginal contributions by pivotality with
respect to causing significant overcharges–as our answer to the first question in Section 4.
The performance of the resulting proportionings is then evaluated in Section 5. Dichoto-
mous approximations turn out to compare very well to existing heuristics. Following the
concluding remarks in Section 6, we enumerate all conceivable 179 dichotomous damage
scenarios with cartels of up to five members and the respective relative responsibilities for
easy reference in Appendix A.

2. Illustration

Consider a market with three producers of differentiated goods that compete à la
Bertrand, i.e., firms simultaneously set prices p1, p2 and p3 (see, e.g., [24]). Their respective
costs are C1(q1) = 30q1, C2(q2) = 20q2 and C3(q3) = 10q3 where q = (q1, q2, q3) denotes
the vector of quantities produced by the firms. Let the quantities demanded by customers
vary in price vector p = (p1, p2, p3) as follows: D1(p) = 100− 4p1 + 3p2 + 0.4p3, D2(p) =
100 − 4p2 + 3p1 + 0.4p3 and D3(p) = 150 − 3p3 + 0.4(p1 + p2). So products 1 and 2
constitute considerably closer substitutes than product 3 but the firm producing product
3 faces a higher demand intercept (i.e., market size) and the lowest unit costs.

The individual maximization of profits yields Bertrand equilibrium prices p∗ =
(44.7; 41.0; 35.7) rounded to one decimal place. The corresponding equilibrium outputs
are q∗ = (58.7; 84.2; 77.1) with revenues of R∗ = (2622.5; 3453.7; 2755.1) and profits of
Π∗ = (861.5; 1770.6; 1983.7). If the firms form a cartel and maximize total industry profit,
prices rise to pc = (82.2; 77.2; 47.9) while quantities fall to qc = (22; 57; 70). In the absence
of side payments, profits in the cartelized market are Πc = (1147.6; 3258.4; 2653.7) from
revenues of Rc = (1807.6; 4398.4; 3353.7).

While profits increase, the illegal coordination by the firms implies an overcharge
damage of ∆pi = pc

i − p∗i for each unit of good i sold to the respective buyer. In our
scenario, overcharges are ∆p = (37.5; 36.1; 12.2) per unit and result in product-specific total
overcharge damages of qc · ∆p = (824.8; 2059.1; 853.7).5

Suppose now that a customer k who purchased 10 units from firm 1 at pc
1, and nothing

else, sues for compensation. The customer may take firm 2 to court because the plaintiff
is free to choose; perhaps k perceives the best odds for enforcing her claim against the
profit champion. If k is then granted compensation for her total overcharges Ok = 375,
firm 2 must pay out Ok. But it is entitled to reclaim some of this from firms 1 and 3. Table 1
summarizes the implications of several proportioning heuristics ρ that have been discussed
by legal practitioners.6
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Table 1. Proportioning heuristics discussed by legal practitioners.

Dividing Compensation . . . Firms’ Shares of Ok ∝ ∆p1

. . . equally per head (ρ0) (33.3%; 33.3%; 33.3%)
. . . by cartel revenue (ρ1) (18.9%; 46.0%; 35.1%)

. . . by cartel sales (ρ2) (14.8%; 38.3%; 47.0%)
. . . by competitive revenue (ρ3) (29.7%; 39.1%; 31.2%)

. . . by competitive sales (ρ4) (26.7%; 38.3%; 35.1%)
. . . by cartel profits (ρ5) (16.3%; 46.2%; 37.6%)

. . . by competitive profits (ρ6) (18.7%; 38.4%; 43.0%)
. . . by cartel benefits (ρ7) (22.0%; 55.6%; 22.4%)

The table illustrates two shortcomings of ad hoc proportioning. First, a firm’s share
of the compensation can vary by up to 20 percentage points when switching from one
heuristic to another. There is no (or at least no obvious) normative basis for claiming that
one division of k’s compensation, e.g., by cartel revenues, reflects relative responsibilities
better than another allocation, e.g., equally per head. Differences in the firms’ shares across
the heuristics seem entirely arbitrary.

Second, all rules assign firm 1 a share of at most 33.3%, i.e., one or both of its competi-
tors are attributed weakly more blame for the increase of p1 than is firm 1. That other firms
bear greater economic responsibility for a given firm’s price increase is not inconceivable:
as an extreme case, think of a non-cartel member who merely best-responds to the higher
industry price level after others secretly formed a (partial) cartel. Intuitively, however,
behavior of a product’s vendor has the strongest effect on its price. So without further
justification, a less than equal share for firm 1 looks rather small.

By contrast, the allocation based on the Shapley shares ρ∗ = (46.0%; 44.7%; 9.3%)
that we will derive in Section 3 takes the relevant economic fundamentals into account.
It uses equilibrium analysis based on full knowledge of the cost and demand structure.
Such analysis acknowledges that the observed price increase of good 1 was driven mainly
by elimination of competition between firms 1 and 2 given the substantial cross-price
effects ∂D1/∂p2 = ∂D2/∂p1 = 3 of p1 and p2 (which numerically dominate ∂D1/∂p3 =
∂D3/∂p1 = 0.4). Significant harm would already have accrued to customer k if only firms 1
and 2 had coordinated their strategies. By comparison, firm 3’s cartel participation–despite
the market size and cost advantages which imply the highest share under heuristics ρ2 and
ρ6–contributed little to k’s damage.

The listed ad hoc heuristics cannot pick this up because they look at a set of numbers–
various measures of market share–that correlate only very loosely with the critical economic
fundamentals. At the same time, a casual inspection of the market is likely to reveal that–
without an infringement–competition is closest between firms 1 and 2. This is what creates
scope for using the Shapley value of an appropriate simple voting game ṽ instead of the
heuristics. Such game can serve as a dichotomous approximation of damages for different
cartel arrangements. Its Shapley value–also known as ṽ’s Shapley-Shubik index–is a good
proxy of the Shapley value of the TU game v derived from full-fledged equilibrium analysis,
and hence of responsibilities for harm.

In above example, competitive revenue shares ρ3 = (29.7%; 39.1%; 31.2%) come closest
to reflecting responsibility in the sense of having smallest ‖ · ‖1-distance to ρ∗ among the
heuristics. The respective distance–a mathematical measure of deviations from Shapley-
based relative responsibilities–is still 43.8%. We show how easily it can be improved after
introducing our formal setup.

3. Basic Notation and Setup

A finite TU game is defined by a set N of n players and a characteristic function
v : 2N → R that assigns a worth v(S) to each subset S ⊆ N of players, also called coalition
S. A TU game (N, v) is referred to as a (monotonic) simple voting game or just simple game
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if v(S) ∈ {0, 1} for all S ⊆ N, v(∅) = 0, v(N) = 1, and S ⊂ T ⊆ N ⇒ v(S) ≤ v(T). In
a simple game (N, v), coalitions S with v(S) = 1 (0) are called winning (losing) and the
game can be described most concisely by the listM(v) = {T ⊆ N : v(T) = 1 and S ⊂ T ⇒
v(S) = 0} of its minimal winning coalitions (MWC).

In our context, the set N refers to the members of a detected cartel. v(N) represents
the financial harm associated with a particular purchase that now needs to be compensated
by the co-defendants and split according to their relative responsibilities. Our default
interpretation will be that v(N) equals the overcharge damage on a single unit of some
good j. It thus corresponds to the difference ∆pj = pc

j − p∗j between the cartel price pc
j and

the competitive price p∗j that would have obtained in the absence of an infringement.7 A
victim’s total compensation under this interpretation would typically be a fixed multiple of
v(N) that accounts for the number of units purchased and that may additionally reflect
accrued interest or super-compensation requirements (such as trebling of damages).

We also write vj(N) instead of v(N) if we want to highlight that overcharges on the
specific good j are considered: namely, the division of damages for n different goods
involves the consideration of n different TU games. For a strict subset S ⊂ N of firms, vj(S)
then represents an estimate of the (per unit) price overcharge ∆pj that would have arisen if
only the players in S had illegally coordinated their actions to maximize joint profit, with
players in N r S maximizing profits in competitive fashion.8

Counterfactuals play a crucial role in both the quantification of an actual harm v(N),
as is explicitly acknowledged in Directive 2014/104/EU, recital 46, and any causality-based
ascription of responsibility. In an ideal world, v(S) can be determined for all S ⊆ N from
a ‘correct’ model of the market. In reality, even sophisticated estimates obtained, e.g.,
by calibrating a structural model of price or quantity competition to cartel and pre or
post-cartel observables, are bound to imply a big error margin for prices pertaining to
unobserved cartel configurations. That rather coarse and even dichotomous assessments of
v(S), however, can yield good and significantly better ascriptions of relative responsibility
than ad hoc measures of market share is the key message of our investigation. Obviously
v(S) = v(∅) = 0 if |S| = 1: joint profit maximization then means competitive behavior by
S’s single member.

Various game-theoretic solution concepts might be invoked in order to share v(N)
among the players. But as shown by Shapley [4] and Young [16], only the Shapley value ϕ,
which is defined by

ϕi(N, v) := ∑
S⊆N

(s− 1)!(n− s)!
n!

·
[
v(S)− v(S r {i})

]
where s = |S| (1)

for i ∈ N, satisfies all the desirable properties mentioned in Section 1. We refer to [15]
for their formal representation and a detailed discussion of why they ensure that ρ∗i :=
ϕi(N, v)/v(N) can indeed be interpreted as the proportion of damage v(N) that firm i’s
infringement of the law is responsible for. For a simple game v, ϕ is also known as the
Shapley-Shubik index [25]. A player i’s marginal contributions v(S)− v(S r {i}) ∈ {0, 1}
can then be viewed as indicator functions for swing or pivot positions in winning coalitions,
i.e., the option for player i to turn S into a losing coalition by leaving.

Table 2 summarizes actual and counterfactual damages to customer k for each of the
10 units of good 1 purchased in the market scenario from Section 2. The indicated marginal
contributions v1(S)− v1(S r {i}) for different S ⊆ N and i ∈ N clarify that cooperation
by firm 1 and 2 is the main driver of overcharges on product 1.9 Firm 3’s participation
has an effect on p1, too–but mainly when 1 and 2 are already collaborating. Aggregating
the marginal contributions according to Equation (1) yields ϕ(N, v1) = (17.2; 16.8; 3.5).
So, as our earlier economic intuition had it, firm 3’s responsibility for k’s damage is
small; responsibilities of firms 1 and 2 are similar with a slightly bigger share for the
vendor, firm 1. Normalization ρ1 ∗ := ϕ(N, v1)/v1(N) = (46.0%; 44.7%; 9.3%) gives the
proportions referred to earlier.10
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In Table 3, we repeat the analysis for a customer k′ who bought units of product 3.
Rather small harm for k′ is caused if only two firms coordinate their strategies, i.e., signif-
icant overcharges arise only if all three firms form a cartel. The corresponding Shapely
shares are ρ3 ∗ = (35.5%; 37.2%; 27.3%).

Table 2. Marginal contributions to ∆p1.

S v1(S) v1(S)− v1(S r {1}) v1(S)− v1(S r {2}) v1(S)− v1(S r {3})

∅, {1}, {2}, {3} 0 0 0 0
{1, 2} 28.20 28.20 28.20 0
{1, 3} 1.67 1.67 0 1.67
{2, 3} 0.73 0 0.73 0.73
{1, 2, 3} 37.49 36.76 35.82 9.29

Table 3. Marginal contributions to ∆p3.

S v3(S) v3(S)− v3(S r {1}) v3(S)− v3(S r {2}) v3(S)− v3(S r {3})

∅, {1}, {2}, {3} 0 0 0 0
{1, 2} 3.67 3.67 3.67 0
{1, 3} 1.25 1.25 0 1.25
{2, 3} 1.68 0 1.68 1.68
{1, 2, 3} 12.20 10.52 10.95 8.53

4. Dichotomous Approximation

The numbers in Tables 2 and 3 and relative responsibilities ρj ∗ can be calculated only
with the benefit of knowing the underlying market model. This involves precise parameter
values that reflect customers’ demand behavior and firms’ costs. Either may be very hard
or impossible to obtain in practice.

The key premise in this paper is that it is comparatively easy (sometimes very easy) to
provide at least a broad picture of substitutabilities and the product-specific competitive
landscape in a cartelized market. This is all that is needed in order to come up with a
rough, binary assessment of whether a given price would be affected significantly or only
modestly if a strict subgroup S of firms N coordinated their action while others compete.

In the above example where customer k bought product 1, for instance, one can likely
say without a full-blown quantification of demand and costs that firms 1 and 2 compete
in relatively good substitutes, while firm 3 is comparatively isolated (regionally or by its
product positioning). This would allow to conclude that collusion by firm 1 and firm 2
would cause significant increases of p1 and p2, whereas collusion by firm 3 and either firm 1
or firm 2 is bound to imply only small changes of these prices.

It is then natural to approximate the correct characteristic function vj for j = 1,
describing real-valued counterfactual overcharges vj(S), by a binary function ṽj. The latter
represents dichotomous assessments of whether a given sub-cartel S could be expected to
cause a significant or a comparatively insignificant price increase for the good in question.

When products in the concerned market are substitutes, adding members to any
partial cartel S cannot result in lower overcharges. So S ⊂ T ⊆ N ⇒ ṽj(S) ≤ ṽj(T).
Moreover, if the set of infringing firms S is empty (or singleton), there is no price change;
while S = N gives rise to the full harm that was, by definition, significant enough for a
court to grant compensation to a litigant. If we then represent no or comparatively small
expected price increases by 0 and significant ones by 1, the binary approximation ṽj satisfies
all defining characteristics of a simple voting game.

For our example, such dichotomous approximation would replace v1(S) = 1.67 and
0.73 for sub-cartels {1, 3} and {2, 3} by ṽ1(S) = 0, and any detailed quantification of high
overcharges (28.20 and 37.49) caused by coalitions {1, 2} and {1, 2, 3} with ṽ1(S) = 1.
That is
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ṽ1(S) =

{
1 if {1, 2} ⊆ S,
0 otherwise.

(2)

Equivalently, we could reflect the broad assessment that a (sub-)cartel S among firms 1,
2 and 3 will significantly harm customer k, i.e. raise price p1, if and only if {1, 2} ⊆ S
by specifying

M(ṽ1) = {{1, 2}};

that is, {1, 2} is the unique element of the set of ṽ1’s minimum winning coalitions.
Computing the Shapley-Shubik index for ṽ1 yields shares of ρ1 D := ϕ(N, ṽ1) =

(50%; 50%; 0). These are rather close to ρ1 ∗ = (46.0%; 44.7%; 9.3%) obtained from the
Shapley value of (N, v1). The respective ‖ · ‖1-distance is 18.6%, i.e., less than half as much
as for all market share heuristics considered in Table 1.

A similar logic applies to overcharges on product 3. For ∆p3 to be anywhere near the
observed level, all three firms need to stop competing. The natural binary approximation of
v3(S) therefore is the simple game with ṽ3(N) = 1 and ṽ3(S) = 0 for S ⊂ N. The respective
Shapley-Shubik index ϕ(N, ṽ3) = (33.3%, 33.3%, 33.3%) is very close to the Shapley shares
evaluated for v3 (with ‖ · ‖1-distance of 12.1%).

The comparatively minimal role of firm 3 and symmetry of firms 1 and 2 in ṽ1 that
follow from a qualitative assessment of the market might arguably motivate a 50:50 division
between firms 1 and 2 also without drawing on any cooperative game theory. What is the
appropriate ascription of responsibilities is, however, less obvious when, for instance, a
cartel involved four firms, say, A, B, C, D, and a qualitative economic assessment shows
that any collaboration by firm A with at least one other firm induces significant damage.
The corresponding set of MWC would then be

M(ṽj) = {AB, AC, AD}

where we abbreviate coalition {A, B} by AB, etc.
Here firm A’s participation is essential for the considered harm; non-participation by

up to two other cartelists would not noticeably change things. Most people’s intuition then
probably is that the singular importance of A–reflected by a veto position in simple voting
game ṽj–entails greater responsibility for compensating victims. But how much greater?
Operationalizing responsibility in a systematic way yields the answer. Presuming one
deems the properties discussed in Section 1 desirable, the allocation should be proportional
to Shapley-Shubik index

ρj D = ϕ(N, ṽj) = (75%; 8.3̄%; 8.3̄%; 8.3̄%).

Similar dichotomous approximations may help to divide damages also when a rela-
tively large number of firms is involved. Firm A may, e.g., have more generally been the
central member in a hub-and-spoke type cartel with n− 1 peripheral firms.11 It might then
be obvious without accurate quantitative estimates that significant price increases for a
customer at hand accrue if and only if firm A and at least one more firm cooperate, i.e.,
ṽj(S) = 1 if A ∈ S and ṽj(S) = 0 if A /∈ S. This yields12

ϕA(N, ṽj) =
n− 1

n
and ϕi(N, ṽj) =

1
n(n− 1)

for i 6= A. (3)

ϕA(N, ṽj) = (n − 1)/n confirms the intuition that the ‘hub’ firm’s responsibility
approaches 100% when it conspired with many exchangeable ‘spokes’. (n − 1)/n also
constitutes a tight upper bound for anyone’s share of responsibility in a dichotomous
assessment of cartel damages because the respective simple game ṽj involves as many
swing or pivot positions for a single player as are compatible with ṽj(S) = 0 for |S| < 2.
Given that a null player i (characterized by vj(S ∪ {i}) = vj(S) for all S ⊂ N) has a
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Shapley value of zero, responsibility shares in any simple game approximation thus satisfy
ϕi(N, ṽj) ∈ [0, (n− 1)/n].

These bounds are clearly too broad to do entirely without an assessment of how
a firm’s marginal contributions in the market translate into binary pivot positions, i.e.,
‘winning coalitions’ for effecting significant price increases that could be swung by refusing
to co-infringe the law. For small cartels, however, it is not difficult to enumerate all
dichotomous damage scenarios which can arise and thus facilitate assessments. The
scenarios correspond to structurally distinct simple games (N, ṽj) with n players such that
ṽj(S) = 1 implies |S| ≥ 2. Exactly 19 of them exist for n ≤ 4, up to a relabeling of players.
They are listed in Table 4 with the corresponding Shapley shares.13

Table 4. Shapley allocations for all dichotomous damage scenarios with n ≤ 4 firms.

M(ṽj) ϕ(N, ṽj) M(ṽj) ϕ(N, ṽj)

1. AB (50%; 50%; 0%; 0%) 11. AB, ACD, BCD (33.3̄%; 33.3̄%; 16.6̄%; 16.6̄%)
2. AB, AC (66.6̄%; 16.6̄%; 16.6̄%; 0%) 12. AB, AC, AD, BC, BD (33.3̄%; 33.3̄%; 16.6̄%; 16.6̄%)
3. AB, AC, BC (33.3̄%; 33.3̄%; 33.3̄%; 0%) 13. AB, BC, CD (16.6̄%; 33.3̄%; 33.3̄%; 16.6̄%)
4. ABC (33.3̄%; 33.3̄%; 33.3̄%; 0%) 14. AB, AC, AD, BC (41.6̄%; 25.0%; 25.0%; 8.3̄%)
5. ABC, ABD (41.6̄%; 41.6̄%; 8.3̄%; 8.3̄%) 15. ABC, ABD, ACD, BCD (25%; 25%; 25%; 25%)
6. ABCD (25%; 25%; 25%; 25%) 16. AB, AC, AD, BCD (50%; 16.6̄%; 16.6̄%; 16.6̄%)
7. AB, AC, BCD (41.6̄%; 25.0%; 25.0%; 8.3̄%) 17. AB, AC, AD, BC, BD, CD (25%; 25%; 25%; 25%)
8. AB, AC, AD (75.0%; 8.3̄%; 8.3̄%; 8.3̄%) 18. AC, AD, BC, BD (25%; 25%; 25%; 25%)
9. AB, CD (25%; 25%; 25%; 25%) 19. ABC, ABD, ACD (50%; 16.6̄%; 16.6̄%; 16.6̄%)
10. AB, ACD (58.3̄%; 25%; 8.3̄%; 8.3̄%) continued for n = 5 in Appendix A

For instance, scenario 1. in Table 4 approximates situations in which only cooperation
by firms A and B is critical for overcharges on the good in question; then A and B share
responsibility for harm 50:50. We saw that this is a reasonable approximation for the
example in Section 2. Scenario 2. corresponds to the big player-small player or hub-and-
spoke situation in Equation (3) with n = 3. Here, firm D is–with the caveat that we deal
with a binary approximation of the real market–a null player and need not contribute to
the litigant’s compensation. In scenario 3., cooperation by any two firms from {A, B, C}
causes damage; while that of all three is necessary and sufficient for damage in scenario 4.;
etc.14

The number of distinct scenarios involving n firms is related to the Dedekind numbers
in discrete mathematics, which grow at a doubly exponential rate. A list of all dichotomous
damage scenarios with n = 5 non-null players already involves 160 entries. They are
collected in Appendix A.15 The enumeration may be useful as a reference to quickly obtain
ballpark assessments of responsibility, e.g., in negotiations of settlements (and perhaps
more generally in context of the ‘inverse power index problem’; see [30]).

In sum, the crucial advantages of binary simple game approximations are that (i) they
require just a big-or-small classification of counterfactual damages, not a full-blown market
simulation; and (ii) the corresponding Shapley-Shubik index still reflects marginal con-
tributions and hence “relative responsibility for the harm caused”. Some approximation
error, translating into a distance of ‖ρ1 D − ρ1 ∗‖1 = 18.6% in the example, is generically
unavoidable. Proportioning harm by some market share benchmark is also very easy and
may per chance have smaller error in other settings. Albeit it is impossible to know when,
because market shares are essentially independent of whether a firm’s (non-)participation
in the cartel affects a particular price or not. In contrast, the Shapley-Shubik index of a
dichotomous approximation is always based on causal links and increases in any additional
pivot position that a firm could conceivably have used to reduce harm.

5. Comparisons to Other Heuristics in Linear Market Environments

To obtain a better picture of unavoidable approximation errors and also to compare
how the Shapley-Shubik index of dichotomous damage scenarios performs in comparison
to ad hoc heuristics let us conduct some in silico experiments. We consider situations where
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the underlying market model involves linear cost and demand for a wide range of parame-
ter configurations. As in Section 2, specific parameter values determine equilibrium prices
and sales, revenues, etc. that the listed heuristics draw on. They also deliver equilibrium
predictions for prices in partial cartels S ⊂ N. These define the characteristic function and
Shapley shares for any given price overcharge ∆pj, j ∈ N. We will compare these to the
Shapley-Shubik index of dichotomous approximations as well as heuristic apportionment
based on market shares.

We write vj, ṽj, ρj ∗ = ϕ(N, vj)/vj(N) = (ρ
j ∗
1 , . . . , ρ

j ∗
n ), and ρj D = ϕ(N, ṽj)/ṽj(N) =

ϕ(N, ṽj) when we proportion damages for product j ∈ N. The analysis focuses on an eco-
nomic assessment of the mismatch between product-specific Shapley contributions ρj ∗ and
aggregate market shares or ρj D, rather than ‖ · ‖1-distances. Such an assessment weights
each per-unit deviation with corresponding sales and distinguishes whether compensation
of one litigant with purchases of a single good is shared, or whether we divide compensation
at the market level assuming all victims in the market have successfully litigated the cartel.
The latter case allows purchase-specific deviations from responsibility-based contributions
to cancel out across products and customers. This gives market share heuristics a relatively
good shot at matching responsibility shares at least in aggregate terms.

A broad assessment of substitutability and the product-specific competitive landscape
may well result in different dichotomous approximations ṽj of a product j-specific char-
acteristic function vj when conducted by different experts. We somehow need to decide
which simple game ṽj serves as our benchmark in what follows. For computational reasons,
we choose a ṽj that constitutes a ‘best’ dichotomous approximation of vj in terms of mini-
mizing ‖ρj D − ρj ∗‖1 for a given product-specific overcharge ∆pj. As a robustness check
we have also conducted computations for simple games that yield a second or third-best
approximation (in this metric). The respective figures corroborate that choosing ṽj by
minimal ‖ρj D − ρj ∗‖1-distance does not imply minimal mismatch in aggregate terms. In
particular, bigger but opposing mistakes in approximating the respective individual vj by
‘second or third-best’ simple games may cancel. The total payment implied by ϕ(N, vj)
across all j ∈ N is then sometimes matched better than using the ‘best’ simple games.
We therefore deem our comparison between simple game approximations with minimal
product-level distance ‖ρj D − ρj ∗‖1 and market share heuristics as reasonably fair. Still we
acknowledge that obtaining good dichotomous approximations of vj will not always be as
straightforward as in Section 2’s example.

5.1. Linear Market Model

Let firms simultaneously set prices à la Bertrand. Best-responding non-cartel members
j /∈ S maximize own profits whereas cartel members i ∈ S ⊆ N simultaneously maximize
joint collusive profits.

Each firm i ∈ N = {1, . . . , n} with n ≥ 3 produces a single good.16 Products are
differentiated substitutes. Firm-specific unit costs γi are constant with γi ≥ 0. A firm’s
demand function is assumed to be linearly decreasing in its own price pi and increasing in
pj for j 6= i:

Di(p) = ai − di · pi + ∑
j∈Nr{i}

bij · pj for ai > γi, di > 0, and bij > 0 for all j 6= i. (4)

Private antitrust enforcement would be superfluous if firm i could not profitably sell
positive quantities. Hence, we assume Di(γ) > 0. To ensure existence and uniqueness of a
Nash equilibrium we will additionally assume that the well-known dominant diagonal
conditions are satisfied (see Section 6.2 in [24] and Corollary 4.6 in [31]), i.e.,

αi := di/∑
j 6=i

bij > 1 and di > ∑
j 6=i

bji for all i ∈ N. (5)
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Parameter αi measures the degree of differentiation between the product produced
by firm i and products of the remaining market participants j 6= i ∈ N. For αi ≈ 1, they
are close substitutes and cartel formation causes big overcharge damages. With increasing
values of αi, substitutability and also the damages caused by a cartel decrease.

We let pS = (pS
1 , . . . , pS

n) denote the Nash equilibrium when firms in S ⊆ N coordinate
their strategies and all remaining firms in N r S act competitively. See [15] for an explicit
derivation of pS assuming that firms are symmetric and Chapter 8 in [32] for an elegant
procedure to determine pS in general linear market environments. ∆p = pc − p∗ =
pN − p∅ then is the vector of unit price overcharges for which compensation can be
claimed. If a customer who bought 10 units of product 1 acts against former cartel members,
overcharge 10∆p1 will be proportioned between the n co-defendants. The characteristic
function vj that describes per unit damage for good j is defined by vj(S) = pS

j − p∗j .

5.2. Symmetric Firms

When firms are symmetric, that is, when ai = a, di = d, bij = b and γi = γ, Shapley
shares ρj ∗ depend only on differentiation parameter α, the number of co-defendants n, and
firm identity j. For the firm j ∈ N that sold the product for which a given customer claims
compensation–firm 1 for the above-mentioned litigant–the Shapley share ρ

j ∗
j that pertains

to its own sales lies in (1/n, 1/2) whereas all remaining firms i 6= j have to contribute
equally with ρ

j ∗
i ∈ (0.5/(n− 1), 1/n) [15] (Corollary 1).17

The precise Shapley shares for firm j = 1 and remaining firms i 6= 1 are illustrated
in panel (a) of Figure 1 for a cartel of n = 4 firms and parameters a = 30, γ = 2, d = 3,
b = d/(3α) as the degree of differentiation α is varied. Because firms are symmetric at
the market level, all heuristics that draw on the symmetric sales, revenue or profit shares
naturally coincide with an equal per head allocation of the compensation for sales of good 1
(indicated as ρ̄ = 25% in Figure 1). But own-price effects of cartel participation are larger
than cross-price effects. The greater the product differentiation, the more the responsibility
of firm 1 for harm to its customers therefore exceeds that of firms 2, 3 and 4. Panel (a) of
Figure 1 shows how this difference increases in α.

(a) ρ1 ∗
1 , ρ1 ∗

i 6=1 and ρ̄ (b) Dichotomous approximation
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Figure 1. (a) Shapley shares ρ1 ∗ and equal ad hoc shares ρ̄ vs. (b) shares ρ1 D implied by dichotomous approximation when
proportioning compensation for purchases of good 1 in a linear Bertrand model with symmetric firms.

For α ≈ 1 and thus firms producing very close substitutes, a qualitative assessment of
the market is likely to predict that a significant price increase of any good j (incl. p1) would
be unsustainable if one or more firms decide to act competitively. The corresponding simple
game withM(ṽj) = {1234} has a Shapley-Shubik index of ρj D = (25%, 25%, 25%, 25%)
(cf. scenario 6, Table 4). If, by contrast, products are only mediocre substitutes then a
qualitative assessment plausibly diagnoses that (i) already partial cartels involving three
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firms can cause significant price increases, (ii) participation of firm 1 is critical for the
equilibrium level of p1 to be close to p∗1 , and (iii) firms 2, 3, and 4 play entirely exchangeable
roles for ∆p1. This makes scenario 19. in Table 4 withM(ṽ1) = {123, 124, 134} the focal
candidate for a dichotomous simple game approximation of overcharges on product 1. This
game ṽ1 yields good approximations ρ1 D = (50%, 16.6̄%, 16.6̄%, 16.6̄%) of the respective
Shapley value ρ1 ∗, which varies continuously in α. It is the best approximation in terms of
‖ · ‖1-distance if α > 1.8, as illustrated in panel (b) of Figure 1. The figure also visualizes
that ρ1 D is everywhere at least as close to ρ1 ∗ as are equal shares ρ̄ prescribed by heuristics
that look at the market rather than the product level.18

We can give market share heuristics a much better shot if we assume that all (or
equal measures of) customers act against all former cartel members. Then the aggregate
overcharge damage of

O := ∑
i∈N

qc
i · ∆pi (6)

ends up being shared, with qc
i denoting the cartel quantity sold by firm i.

If damages connected to each good j are allocated according to Shapley shares ρj ∗,
then aggregate Shapley payments of

Φi := ∑
j∈N

qc
j · ϕi(N, vj) = ∑

j∈N
qc

j · ∆pj · ρ
j ∗
i (7)

must be made by a given firm i for its own sales and those of others. Product-level
differences between the vendor of a good and its competitors cancel under symmetry. So
Φi = O/n.

Similarly let Hρ
i denote i’s aggregate payments when some heuristic shares ρ are

applied instead of ρ1 ∗, . . . , ρn ∗. With symmetric firms, all heuristics ρ that go with an
equal division ρ̄ imply Hρ

i = O/n = Φi. Hence the practical proposals discussed in
Section 2 work well if all victims seek compensation: product-level deviations from relative
responsibility that arise because firms are non-exchangeable for individual customers (cf.
Figure 1) vanish in the aggregate provided firms are symmetric at the market level.

5.3. Asymmetric Firms

For asymmetric market configurations, however, it is likely that firm i contributes
more in total than its responsibility share (Hρ

i > Φi) or too little (Hρ
i < Φi) for any given

heuristic ρ. We will then evaluate the aggregate mis-allocation of damages ∑i∈N |Φi − Hρ
i |

for competing proportioning methods, namely for dichotomous product-level approxima-
tions and market share heuristics. To make (mis-)allocations of compensation payments
comparable across different asymmetric scenarios, we normalize the mis-allocation by the
respective total overcharge damage O. In particular, Figure 2 shows percentage values

Mρ := ∑
i∈N
| Φi − Hρ

i | /O (8)

that allow unit-free statements on how well different methods are mimicking shares based
on relative responsibility for the harm caused. The figure takes up Section 5.2’s parameters
a = 30, γ = 2, d = 3, n = 4, b = d/(3α) as baseline and reports results for one of four
kinds of asymmetry at a time and for the six most prominent entries in Table 1.

In the two top panels (a) and (b) of Figure 2, firms differ in their market size or
saturation quantity ai. The dichotomous approximation method ρD strictly outperforms
ad hoc heuristics for α > 1.4. With increasing values of α, only an allocation based on
competitive sales ρ4 stays close to the Shapley-based allocation ρ∗(N, v). However, ρD

does even better.
The discontinuous jumps that can occur when using dichotomous simple game approx-

imations (ρD) is particularly visible in panel (c), where firms 1 and 2 are twice as efficient as
3 and 4. For α = 1.55 to the left of the first jump, aggregate overcharge damages are roughly
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O = 321 and using product-specific ‘best’ dichotomous approximations ṽj gives rise to

equal shares ρ
j D
i ≡ 25% for each firm i in each firm j’s product. This yields HρD

i = 80.3 for
i ∈ N. Now look at one of the two inefficient firms, say firm 3. Its product-specific Shapley
shares ρ1 ∗

3 , ρ2 ∗
3 , ρ3 ∗

3 , ρ4 ∗
3 turn out to be 21%, 21%, 35.4%, and 20.6% (yielding total Shapley

payments Φ3 = 77.2). So ρ3 D
3 = 25% significantly underestimates firm 3’s responsibility

for the overcharges on its own sales but ρ1 D
3 = ρ2 D

3 = ρ4 D
3 = 25% overestimate firm 3’s

responsibility for other firms’ overcharges. These over and underestimations mostly cancel,

implying HρD

3 −Φ3 = 80.3− 77.2 = 3.1 and MρD
= 4 · 3.1/321 = 3.9%.19

Now move from α = 1.55 to α = 1.6 on the right of the jump, with O = 286. There ρ1 D
3 ,

ρ2 D
3 , ρ3 D

3 , ρ4 D
3 in the respective ‘best’ product-specific binary assessments abruptly change

to 16.6̄%, 16.6̄%, 25%, and 25% with HρD

3 = 58.1. The corresponding Shapley shares ρ
j ∗
3 , by

contrast, vary continuously. They are 20.8%, 20.8%, 35.9%, and 20.4% for α = 1.6 (yielding
Φ3 = 68.7). The simple voting games then underestimate firm 3’s actual Shapley share not
only for own sales but also when customers of firms 1 and 2 sue. With less cancellations,
the aggregate deviation between firm 3’s (and analogously firm 4’s) payments using

characteristic functions vj vs. simple games ṽj increases to Φ3 − HρD

3 = 10.6, giving rise to
MρD

= 4 · 10.6/286 = 14.8%.

(a) ai = aj/3 = a (b) a1 = a2/3 = a3/7 = a4/10 = a
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Games 2021, 12, 74 13 of 18

(e) b = 1
2 ; di = dj/η = d (f) bi,i′ = bi,j = bj,i = b3,4/β = b4,3/β = 1
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Figure 2. Normalized mis-allocation Mρ implied by market share heuristics and using dichotomous simple game approxi-
mations in a linear Bertrand model with asymmetric firms, letting i ∈ {1, 2} and j ∈ {3, 4} and respectively deviating from
symmetric benchmark parameters a = 30, γ = 2, d = 3, n = 4, b = d/(3α) as indicated in the respective panels (a–f). The
black dotted line reflects the use of dichotomous simple game approximations.

The comparison of mis-allocations using dichotomous approximations and market
share heuristics in Figure 2 shows that ρD may sometimes perform worse than all ad hoc
heuristics (for 1.6 ≤ α ≤ 1.9 in panel (c)). It should be noted, though, that this happens
rarely and that the corresponding deviations in panel (c) are only around 15%. Any of
the market share heuristics is for many of the configurations in Figure 2 much further
off. Note also that a measure of market shares that performs very well for one kind of
asymmetry– namely, sales during competitive conduct ρ4 for market size asymmetry in
panels (a,b); competitive revenues ρ3 for cost asymmetry in panels (c,d) or asymmetric
own-price effects in panel (e); cartel profits ρ5 for asymmetric cross-price effects in panel
(f) – turns out to perform very badly for some other kind.20 In contrast to this, allocations
based on dichotomous simple game approximations always deduce responsibility from
causal links between cartel participation and prices and also keep MρD

robustly below 20%
in all considered scenarios.

The latter bound increases to a still moderate 25% if approximations of the actual
product-specific characteristic function vj involve simple voting games ṽj whose Shapley-
Shubik index generates the second or third-smallest ‖ · ‖1-distance to ρj ∗ rather than to
minimize ‖ϕ(N, ṽj)− ϕ(N, vj)/vj(N)‖1. So simple game approximations quite robustly
deliver good estimates of the full information shares that reflect relative responsibility for
the harm caused. They perform still better compared to market shares or equal per head
divisions when only individual overcharges–not aggregate damages–are concerned (cf. in
Figure 1).

6. Concluding Remarks

The above analysis has hopefully demonstrated the potential of using simple voting
games as first approximations of harder to define TU games. Finding the right approxima-
tion ṽj of an underlying but unknown characteristic function vj for cartel overcharges on a
given product j will require some expertise and involve a certain degree of freedom. The
proposed method still seems much simpler to implement than estimation of a full structural
market model and is a lot less ad hoc than applying any of various equally (un)convincing
market share heuristics to the problem at hand.

Specific circumstance may call for finer approximations of the underlying characteristic
function, as suggested by the multi-level approximation in endnote 12. It could therefore
be promising to consider (j, k) simple games (see [33]) instead of standard simple voting
games in future research. These allow to translate j ≥ 2 intensities of individual cartel
participation into k ≥ 2 levels of harm.
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The mathematical properties of the Shapley value and–closely related–the Shapley-
Shubik index in our view make these solutions for cooperative games uniquely suitable for
the task of identifying responsibility for a real-valued or binarily approximated financial
damage. Similar reasoning may, however, extend in other domains of application to
the Banzhaf value and the Penrose-Banzhaf index ([34,35]), as well as other values for
TU games and their simple game equivalents. For example, weighted versions of the
Shapley value and Shapley-Shubik index [36] could be invoked to model exemptions that
EU legislation provides for whistle-blowers or increased responsibilities that may for a
given cost and demand structure derive from organizational leadership of a cartel.
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Appendix A. All Dichotomous Damage Scenarios with n = 5 Firms

M(ṽj) 60 ·ϕ(N, ṽj) M(ṽj) 60 ·ϕ(N, ṽj)

1.–19. see Table 4 on p. 8 71. AB, AC, ADE, BCDE (30, 10, 10, 5, 5)
20. AB, AC, AD, AE (48, 3, 3, 3, 3) 72. AB, AC, ADE, BDE, CDE (24, 9, 9, 9, 9)
21. AB, AC, AD, AE, BC (28, 13, 13, 3, 3) 73. AB, AC, BC, ADE (22, 17, 17, 2, 2)
22. AB, AC, AD, AE, BC, BD (23, 18, 8, 8, 3) 74. AB, AC, BC, ADE, BDE (19, 19, 14, 4, 4)
23. AB, AC, AD, AE, BC, BD, BE (21, 21, 6, 6, 6) 75. AB, AC, BC, ADE, BDE, CDE (16, 16, 16, 6, 6)
24. AB, AC, AD, AE, BC, BD, BE, CD (16, 16, 11, 11, 6) 76. AB, AC, BC, DE (14, 14, 14, 9, 9)
25. AB, AC, AD, AE, BC, BD, BE, CD, CE (14, 14, 14, 9, 9) 77. AB, AC, BCD, BCE (22, 17, 17, 2, 2)
26. AB,AC,AD,AE,BC,BD,BE,CD,CE,DE (12, 12, 12, 12, 12) 78. AB, AC, BCD, BCE, BDE (19, 19, 14, 4, 4)
27. AB, AC, AD, AE, BC, BD, BE, CDE (18, 18, 8, 8, 8) 79. AB, AC, BCD, BCE, BDE, CDE (16, 16, 16, 6, 6)
28. AB, AC, AD, AE, BC, BD, CD (18, 13, 13, 13, 3) 80. AB, AC, BCD, BDE (22, 17, 12, 7, 2)
29. AB, AC, AD, AE, BC, BD, CE (18, 13, 13, 8, 8) 81. AB, AC, BCD, BDE, CDE (19, 14, 14, 9, 4)
30. AB, AC, AD, AE, BC, BD, CE, DE (16, 11, 11, 11, 11) 82. AB, AC, BCDE (28, 13, 13, 3, 3)
31. AB, AC, AD, AE, BC, BD, CDE (20, 15, 10, 10, 5) 83. AB, AC, BD, ADE (22, 17, 7, 12, 2)
32. AB, AC, AD, AE, BC, BDE (25, 15, 10, 5, 5) 84. AB, AC, BD, ADE, BCE (19, 19, 9, 9, 4)
33. AB, AC, AD, AE, BC, BDE, CDE (22, 12, 12, 7, 7) 85. AB, AC, BD, ADE, BCE, CDE (16, 16, 11, 11, 6)
34. AB, AC, AD, AE, BC, DE (20, 10, 10, 10, 10) 86. AB, AC, BD, ADE, CDE (19, 14, 9, 14, 4)
35. AB, AC, AD, AE, BCD (33, 8, 8, 8, 3) 87. AB, AC, BD, CD, ADE (17, 12, 12, 17, 2)
36. AB, AC, AD, AE, BCD, BCE (30, 10, 10, 5, 5) 88. AB, AC, BD, CD, ADE, BCE (14, 14, 14, 14, 4)
37. AB, AC, AD, AE, BCD, BCE, BDE (27, 12, 7, 7, 7) 89. AB, AC, BD, CDE (17, 17, 12, 12, 2)
38. AB,AC,AD,AE,BCD,BCE,BDE,CDE (24, 9, 9, 9, 9) 90. AB, AC, BD, CE (12, 17, 17, 7, 7)
39. AB, AC, AD, AE, BCDE (36, 6, 6, 6, 6) 91. AB, AC, BD, CE, ADE (14, 14, 14, 9, 9)
40. AB, AC, AD, BC, BD, CDE (17, 17, 12, 12, 2) 92. AB, AC, BD, CE, DE (12, 12, 12, 12, 12)
41. AB, AC, AD, BC, BD, CE (15, 15, 15, 10, 5) 93. AB, AC, BDE (25, 15, 10, 5, 5)
42. AB, AC, AD, BC, BD, CE, DE (13, 13, 13, 13, 8) 94. AB, AC, BDE, CDE (22, 12, 12, 7, 7)
43. AB, AC, AD, BC, BDE (22, 17, 12, 7, 2) 95. AB, AC, DE (22, 7, 7, 12, 12)
44. AB, AC, AD, BC, BDE, CDE (19, 14, 14, 9, 4) 96. AB, AC, DE, BCD (19, 9, 9, 14, 9)
45. AB, AC, AD, BC, BE (20, 20, 10, 5, 5) 97. AB, AC, DE, BCD, BCE (16, 11, 11, 11, 11)
46. AB, AC, AD, BC, BE, CDE (17, 17, 12, 7, 7) 98. AB, ACD, ACE (37, 12, 7, 2, 2)
47. AB, AC, AD, BC, BE, DE (15, 15, 10, 10, 10) 99. AB, ACD, ACE, ADE (39, 9, 4, 4, 4)
48. AB, AC, AD, BC, DE (17, 12, 12, 12, 7) 100. AB, ACD, ACE, ADE, BCD (24, 14, 9, 9, 4)
49. AB, AC, AD, BCD, BCE (27, 12, 12, 7, 2) 101. AB, ACD, ACE, ADE, BCD, BCE (21, 16, 11, 6, 6)
50. AB, AC, AD, BCD, BCE, BDE (24, 14, 9, 9, 4) 102. AB, ACD, ACE, ADE, BCD, BCE, BDE (18, 18, 8, 8, 8)
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M(ṽj) 60 ·ϕ(N, ṽj) M(ṽj) 60 ·ϕ(N, ṽj)

51. AB, AC, AD, BCD, BCE, BDE, CDE (21, 11, 11, 11, 6) 103. AB,ACD,ACE,ADE,BCD,BCE,BDE,CDE (15, 15, 10, 10, 10)
52. AB, AC, AD, BCDE (33, 8, 8, 8, 3) 104. AB, ACD, ACE, ADE, BCD, BCE, CDE (18, 13, 13, 8, 8)
53. AB, AC, AD, BCE (30, 10, 10, 5, 5) 105. AB, ACD, ACE, ADE, BCD, CDE (21, 11, 11, 11, 6)
54. AB, AC, AD, BCE, BDE (27, 12, 7, 7, 7) 106. AB, ACD, ACE, ADE, BCDE (27, 12, 7, 7, 7)
55. AB, AC, AD, BCE, BDE, CDE (24, 9, 9, 9, 9) 107. AB, ACD, ACE, ADE, CDE (24, 9, 9, 9, 9)
56. AB, AC, AD, BE (25, 15, 5, 5, 10) 108. AB, ACD, ACE, BCD (22, 17, 12, 7, 2)
57. AB, AC, AD, BE, BCD (22, 17, 7, 7, 7) 109. AB, ACD, ACE, BCD, BCE (19, 19, 14, 4, 4)
58. AB, AC, AD, BE, BCD, CDE (19, 14, 9, 9, 9) 110. AB, ACD, ACE, BCD, BCE, CDE (16, 16, 16, 6, 6)
59. AB, AC, AD, BE, CDE (22, 12, 7, 7, 12) 111. AB, ACD, ACE, BCD, BDE (19, 19, 9, 9, 4)
60. AB, AC, AD, BE, CE (20, 10, 10, 5, 15) 112. AB, ACD, ACE, BCD, BDE, CDE (16, 16, 11, 11, 6)
61. AB, AC, AD, BE, CE, BCD (17, 12, 12, 7, 12) 113. AB, ACD, ACE, BCD, CDE (19, 14, 14, 9, 4)
62. AB, AC, AD, BE, CE, DE (18, 8, 8, 8, 18) 114. AB, ACD, ACE, BCDE (25, 15, 10, 5, 5)
63. AB, AC, AD, BE, CE, DE, BCD (15, 10, 10, 10, 15) 115. AB, ACD, ACE, BDE (22, 17, 7, 7, 7)
64. AB, AC, ADE (42, 7, 7, 2, 2) 116. AB, ACD, ACE, BDE, CDE (19, 14, 9, 9, 9)
65. AB, AC, ADE, BCD (27, 12, 12, 7, 2) 117. AB, ACD, ACE, CDE (22, 12, 12, 7, 7)
66. AB, AC, ADE, BCD, BCE (24, 14, 14, 4, 4) 118. AB, ACD, BCD, CDE (17, 17, 12, 12, 2)
67. AB, AC, ADE, BCD, BCE, BDE (21, 16, 11, 6, 6) 119. AB, ACD, BCDE (23, 18, 8, 8, 3)
68. AB, AC, ADE, BCD, BCE, BDE, CDE (18, 13, 13, 8, 8) 120. AB, ACD, BCE (20, 20, 10, 5, 5)
69. AB, AC, ADE, BCD, BDE (24, 14, 9, 9, 4) 121. AB, ACD, BCE, CDE (17, 17, 12, 7, 7)
70. AB, AC, ADE, BCD, BDE, CDE (21, 11, 11, 11, 6) 122. AB, ACD, CDE (20, 15, 10, 10, 5)

M(ṽj) 60 ·ϕ(N, ṽj)

123. AB, ACDE (33, 18, 3, 3, 3)
124. AB, AC, ADE, BDE (27, 12, 7, 7, 7)
125. AB, ACDE, BCDE (21, 21, 6, 6, 6)
126. AB, CD, ACE (17, 12, 17, 12, 2)
127. AB, CD, ACE, ADE (19, 9, 14, 14, 4)
128. AB, CD, ACE, ADE, BCE (16, 11, 16, 11, 6)
129. AB, CD, ACE, ADE, BCE, BDE (13, 13, 13, 13, 8)
130. AB, CE, ACE, BDE (14, 14, 14, 14, 4)
131. AB, CDE (18, 18, 8, 8, 8)
132. ABC, ABD, ABE (27, 27, 2, 2, 2)
133. ABC, ABD, ABE, ACD (32, 12, 7, 7, 2)
134. ABC, ABD, ABE, ACD, ACE (34, 9, 9, 4, 4)
135. ABC, ABD, ABE, ACD, ACE, ADE (36, 6, 6, 6, 6)
136. ABC, ABD, ABE, ACD, ACE, ADE, BCD (21, 11, 11, 11, 6)
137. ABC, ABD, ABE, ACD, ACE, ADE, BCD, BCE (18, 13, 13, 8, 8)
138. ABC, ABD, ABE, ACD, ACE, ADE, BCD, BCE, BDE (15, 15, 10, 10, 10)
139. ABC, ABD, ABE, ACD, ACE, ADE, BCD, BCE, BDE, CDE (12, 12, 12, 12, 12)
140. ABC, ABD, ABE, ACD, ACE, ADE, BCDE (24, 9, 9, 9, 9)
141. ABC, ABD, ABE, ACD, ACE, BCD (19, 14, 14, 9, 4)
142. ABC, ABD, ABE, ACD, ACE, BCD, BCE (16, 16, 16, 6, 6)
143. ABC, ABD, ABE, ACD, ACE, BCD, BDE (16, 16, 11, 11, 6)
144. ABC, ABD, ABE, ACD, ACE, BCD, BDE, CDE (13, 13, 13, 13, 8)
145. ABC, ABD, ABE, ACD, ACE, BCDE (22, 12, 12, 7, 7)
146. ABC, ABD, ABE, ACD, ACE, BDE (19, 14, 9, 9, 9)
147. ABC, ABD, ABE, ACD, ACE, BDE, CDE (16, 11, 11, 11, 11)
148. ABC, ABD, ABE, ACD, BCD (17, 17, 12, 12, 2)
149. ABC, ABD, ABE, ACD, BCD, CDE (14, 14, 14, 14, 4)
150. ABC, ABD, ABE, ACD, BCDE (20, 15, 10, 10, 5)
151. ABC, ABD, ABE, ACD, BCE (17, 17, 12, 7, 7)
152. ABC, ABD, ABE, ACD, BCE, CDE (14, 14, 14, 9, 9)
153. ABC, ABD, ABE, ACD, CDE (17, 12, 12, 12, 7)
154. ABC, ABD, ABE, ACDE (30, 15, 5, 5, 5)
155. ABC, ABD, ABE, ACDE, BCDE (18, 18, 8, 8, 8)
156. ABC, ABD, BCE (30, 10, 10, 5, 5)
157. ABC, ABD, ABE, CDE (15, 15, 10, 10, 10)
158. ABC, ABD, ACD, BCE (15, 15, 15, 10, 5)
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M(ṽj) 60 ·ϕ(N, ṽj)

159. ABC, ABD, ACD, BCE, BDE (12, 17, 12, 12, 7)
160. ABC, ABD, ACD, BCE, BDE, CDE (9, 14, 14, 14, 9)
161. ABC, ABD, ACD, BCDE (18, 13, 13, 13, 3)
162. ABC, ABD, ACE, ADE (32, 7, 7, 7, 7)
163. ABC, ABD, ACE, ADE, BCDE (20, 10, 10, 10, 10)
164. ABC, ABD, ACE, BCDE (18, 13, 13, 8, 8)
165. ABC, ABD, ACE, BDE (15, 15, 10, 10, 10)
166. ABC, ABD, ACE, BDE, CDE (12, 12, 12, 12, 12)
167. ABC, ABD, ACDE (28, 13, 8, 8, 3)
168. ABC, ABD, ACDE, BCDE (16, 16, 11, 11, 6)
169. ABC, ABD, CDE (13, 13, 13, 13, 8)
170. ABC, ABDE (23, 23, 8, 3, 3)
171. ABC, ABDE, ACDE (26, 11, 11, 6, 6)
172. ABC, ABDE, ACDE, BCDE (14, 14, 14, 9, 9)
173. ABC, ADE (28, 8, 8, 8, 8)
174. ABC, ADE, BCDE (16, 11, 11, 11, 11)
175. ABCD, ABCE (18, 18, 18, 3, 3)
176. ABCD, ABCE, ABDE (21, 21, 6, 6, 6)
177. ABCD, ABCE, ABDE, ACDE (24, 9, 9, 9, 9)
178. ABCD, ABCE, ABDE, ACDE, BCDE (12, 12, 12, 12, 12)
179. ABCDE (12, 12, 12, 12, 12)

Notes
1 Refs [8,9] provide comprehensive introductions. For a concise overview see [10].
2 Another application of simple games and voting power indices outside voting contexts has recently been studied by Kovacic

and Zoli [11]. They show that the Penrose-Banzhaf index can improve the prediction of violent conflict in ethnically polarized
societies.

3 Litigants can also strive to find out-of-court settlements, or settle with some firms and take the remaining ones to court. After
a settlement “. . . the [remaining] claim of the injured party should be reduced by the settling infringer’s share of the harm caused . . . ”
(Directive 2014/104/EU, recital 51).

4 Other values fail to satisfy at least one property. For instance, the Banzhaf value and its restriction to simple voting games, the
Penrose-Banzhaf index, do not satisfy efficiency; their normalized variants are efficient but violate linearity. They are hence
unsuitable for the purpose at hand. [17–19] invoke similar reasoning for liability shares in successive torts.

5 Additional harm stems from deadweight losses: customers who would have made (additional) purchases, and thus would have
enjoyed surplus had prices only been p∗, failed to do so. We are unaware of cases in which compensation for this has successfully
been claimed and disregard these losses in what follows.

6 Cartel benefits (ρ7) reflect normalized relative profit increases of the cartel members. Yet more heuristics are conceivable: for
instance, proportioning based on product-specific total overcharge damages would yield shares of (22.1%; 55.1%; 22.8%) which
are very similar to heuristic ρ7.

7 It is easiest to think of each firm i ∈ N producing a single good but it is possible to let the set of products M 3 j be distinct from
the set of cartel members N. This can reflect multi-product firms as well as goods produced by non-cartel members. The latter’s
price may have increased due to the passing on of cartel margins along a vertical value chain or due to ‘umbrella effects’ that
derive from best response behavior of cartel outsiders.

8 We will assume that once a cartel has formed, other firms become at least implicitly aware of its existence. The cartel outsiders
will adapt optimally to the new market environment, as is already anticipated by the cartel members. This and that the latter
maximize joint profits are standard assumptions in industrial organization and seem reasonable defaults for the analysis of cartel
counterfactuals. However, if there is sufficient evidence that firms pursued alternative objectives in a given cartel case then
computations of vj(S) could be based on these other objectives.

9 For example, in the counterfactual scenario S = {1, 2}, the price of product 1 increases to 72.90. Hence the damage caused by
coalition S = {1, 2} is v1({1, 2}) = 72.90− 44.70 = 28.20. If either member left S then prices would become competitive, i.e.,
v1(S r {i}) = 0 for i ∈ {1, 2}.

10 The analogous table for ∆p2, i.e., overcharges on product 2, is very similar to Table 2. Respective Shapley shares are ρ2 ∗ =
(44.4%, 45.9%, 9.7%).

11 To fix ideas, think of a crooked architect A who is remunerated in fixed proportion to contract volumes and can define
specifications so as to steer procurement for customers towards any building companies B, C, . . . that are willing to inflate prices.
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12 The easiest way to compute the Shapley value in this scenario is to use equation (5) of [15].–A qualitatively different scenario
could be that all player pairs {A, i} ⊆ S with i ∈ {B, C, . . .} cause similar incremental damages, independently of each other. The
corresponding mapping v̂j with v̂j(S) = s− 1 if A ∈ S and v̂j(S) = 0 otherwise, is not a simple game. Still, it and the resulting
Shapley value with ϕA(N, v̂j) = 1

2 v̂j(N) and ϕi(N, v̂j) = 1
2(n−1) v̂j(N) for i 6= A may constitute a straightforward multi-level

rather than dichotomous approximation of causal links and responsibilities when a structural model is difficult to estimate.
Simple game approximations may sometimes be refined easily.

13 The median number of firms in price fixing US cartels is 4 according to analysis by [26], which reflects 329 cases.
14 Consider, e.g., the European plasterboard cartel. When detected, four companies (BPB PLC, Gebrüder Knauf Westdeutsche Gipswerke

KG, Société Lafarge SA and Gyproc Benelux NV) were active in the cartel. They all operated in several countries but their abilities to
influence prices differed locally. For instance, the first three firms were large players in Germany and France while Gyproc in
France held a market share below 5%. According to the European Commission, “[i]t is clear that the three operators considered it
necessary to make Gyproc take part in the exchange as far as the German market was concerned, where that undertaking, which overall was
much smaller than the three others, had a significant market share” (see [27] (recital 268)). To do justice to this case would require much
deeper analysis, but this description already hints that in the German market all four firms were necessary to cause significant
damage (scenario 6), whereas Gyproc’s contribution to harm was rather negligible in France (scenario 4).

15 See [28] for n ≤ 4 and [29] for n = 5. Our list comprises fewer games because ṽj(S) = 1 requires |S| ≥ 2 in a cartel context but
our Appendix A corrects several typos hidden in Baldan’s list. Some games in the list, such as scenario 9, would be considered as
improper in the context of voting: they involve disjoint winning coalitions. If we think of A and B as two producers and of C
and D as their retailers, damage may plausibly arise already if the producers or the retailers cooperate. If there is little scope for
additional marginalization by vertical collusion,M(ṽj) = {AB, CD}makes good sense.

16 For a duopoly with n = 2, cartel participation of either firm is essential for raising prices. Relative responsibilities then are
ρ1 ∗ = ρ2 ∗ = (50%, 50%) irrespective of cost or demand asymmetries.

17 ρ
j ∗
j > 1/n and ρ

j ∗
i < 1/n, i 6= j, can be shown to apply to symmetric firms also for non-linear demand and costs, both under

price and quantity competition (cf. Proposition 2 in [15]).
18 For very high degrees of differentiation, a qualitative assessment might diagnose significant scope to increase p1 already

if firm 1 colludes with one, not two other firms, or if all three competitors of 1 collude. The resulting MWC are then
M(ṽ1) = {12, 13, 14, 234} with, again, ρ1 D = (50%, 16.6̄%, 16.6̄%, 16.6̄%). Extreme differentiation could conceivably lead
to a bad approximation byM(ṽ1) = {12, 13, 14} with ρ1 D = (75%, 8.3̄%, 8.3̄%, 8.3̄%). This would be incompatible, however,
with linear costs and demand for symmetric firms since these imply 25% < ρ1 ∗

1 < 50%.
19 Inefficient firms 3 and 4 each pay 3.1 too much; so each efficient firm, 1 and 2, pays 3.1 too little.
20 Although the baseline parameters considered in panels (a–f) differ from the ones used in the simulations in [15], the asymmetry-

dependent ‘best’ market share heuristics happen to stay unchanged. This suggests that precise parameters are less important for
how heuristics perform than the economic asymmetry at hand.
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