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Abstract

Cartel members are liable jointly and severally: any of the infringing firms may be litigated
and forced to compensate victims on behalf of all. EU law then stipulates that the co-infringers
must pay internal redress in proportion to their “relative responsibility for the harm caused”.
We suggest to quantify this responsibility by invoking basic proportioning axioms and the
requirement that redress payments reflect causal links between actions and damages. This
calls for application of the Shapley value. We prove that even symmetric firms may bear
unequal responsibility for individual harm, characterize proportionings for linear market
environments, and show that proportioning by market shares typically fails to reflect relative
responsibilities.
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1. Introduction

Cartel victims have a right to compensation but the pertinent legal hurdles are high.

Annually up to 23.3 billion euro of damages used to remain unclaimed from EU-

wide cartels according to the European Commission (SWD/2013/203/Final, recital 67).

In 2014, this was key motivation for the Commission to advance the Directive on

Antitrust Damages Actions 2014/104/EU, also known as Damages Directive. The position

of plaintiffs has since improved and several big cases are pending.

Two provisions for the compensation of cartel victims in the Directive motivate

this study. First, the members of a cartel are liable jointly and severally: an injured party

can litigate any cartel member for the full amount of its damages; if courts confirm the

claim, the defendant must compensate the plaintiff on behalf of the entire cartel. This

is regardless of whether the plaintiff made its purchases from the sued firm or other

ones. Similar provisions apply in Australia, Japan, the UK, or the US.

Second, the sued cartel member is entitled to internal redress. Such a rule of

contribution existed in EU member states before (incl. the UK) but details differed.

It contrasts with the no contribution rule in federal US antitrust cases (cf. Texas

Industries, Inc. v. Radcliff Materials, Inc., 451 U.S. 630, 1981) and intermediate

arrangements elsewhere.

According to the Directive, cartelists’ internal obligations in compensating any

external claimant must reflect “. . . their relative responsibility for the harm caused by the

infringement of competition law” (Article 11(5)). The Directive is not specific on how this

should be operationalized. Our goal is to quantify relative responsibility for cartel

damages in an economically sound way.1

The analysis focuses on the assessment of economic damage contributions, but is

based on the canonical causal conception of legal and moral responsibility for harm.

Feinberg (1970, p. 195f) provides a lucid discussion of its three parts: firstly, the

defendant was at fault in acting. This clearly applies if, for instance, firm i’s manager

illegally coordinated its production of some commodity with competitors over dinner,

violating antitrust laws. Secondly, the faulty act caused the harm: these conversations

resulted in a price increase for the customer. And, finally, the faulty aspects of the

1The issue of how alternative norms, such as the no contribution rule in the US, affect incentives
for cartel formation, whistleblowing, settlements, etc. is left aside. See, for instance, Landes and Posner
(1980) or Hviid and Medvedev (2010).
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act were relevant to its causal connection to the harm: illegal coordination by the

managers – not, perhaps, just the reaction of commodity investors to observing the

meeting – caused the increase. All three parts call for appropriate verification in

practical applications.

After this, a systematic approach is warranted to determine each firm’s contribution

to harm. Asymmetry of cartel members can translate very differently into asymmetric

turnover, revenues, or profits. So the simple idea to proportion damages by market

shares involves a high degree of arbitrariness. Sound methods should reflect

considerations of the following kind: first, a firm has responsibility and should

contribute to compensating a given customer only if this customer’s damages would

have been lower had the firm refused to participate in the cartel. How much lower the

respective damage would have been if the firm had stayed legal (and then possibly

some others, too) ought to, second, determine the level of the contribution. Third, if

cartel membership of two firms had identical effects on harm, both should contribute

the same. Finally, a victim’s full compensation should be proportioned in a way that

neither depends on the unit of account nor on whether multiple damages are dealt

with separately or jointly, whether interest has accumulated, etc.

These properties translate into mathematical conditions that are well-known in

cooperative game theory as the null player, marginality, symmetry, efficiency and

linearity axioms. Classical results by Shapley (1953a) and Young (1985) then imply

that the Shapley value of an appropriately defined game provides the best way to

split external obligations by relative responsibility of the co-infringers. The Shapley

value is an accepted tool for allocating costs or profits in joint ventures.2 Its use for

the division of cartel damages was initially proposed by Schwalbe (2013) and Napel

and Oldehaver (2015) to law audiences. We are the first to analyze the pertinent

quantitative aspects.

The key feature of Shapley proportionings is that they impute individual respon-

sibility from the ability to influence prices. We revisit the underlying reasoning and

a little-known formula that can simplify computations (Section 3) after detailing the

problem at hand (Section 2). We prove that even symmetric firms generally have

asymmetric obligations with respect to individual claimants (Section 4). For linear

market environments, we derive how Shapley proportionings are linked to demand

2See, e.g., Shubik (1962), Hart and Moore (1990), Young (1994), or Moretti and Patrone (2008). Dehez
and Ferey (2013, 2016) and Huettner and Karos (2017) apply it to sequential liability problems.
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and cost parameters and deduce useful bounds (Section 5). In Section 6, we compare

Shapley allocations to ad hoc proportioning based on sales, profits, or a flat per head

assignment. We find that corresponding suggestions by legal practitioners mostly

clash with proportioning by relative responsibility.

2. Cartel Damages and Relative Responsibility

Cartel customers usually suffer two types of damage. First, there is the visible loss:

each unit that was purchased involved an overcharge. Second, customers who would

have made (additional) purchases and enjoyed surplus on these if prices had been

competitive, failed to do so. Respective deadweight losses are acknowledged in the

legal literature but have played no role in practice yet (see Argenton et al. 2020).

We will hence concentrate on overcharge damages caused by a hardcore cartel. The

suggested approach could be generalized, however, by invoking lost profits or money-

metric indirect utility, and to analysis of other communal antitrust violations.3

A cartel member i having responsibility for damages of a given claimant k requires

that k’s damages are causally linked to i’s cartel membership, i.e., their scale, scope

or distribution would have differed without i’s illegal action. Identifying the causal

links between anticompetitive conduct and harm is generally difficult (see, e.g., Lianos

2015). What makes analysis of responsibility particularly interesting, though, is that

even symmetric cost and demand structures may generate asymmetric links to the

harm of a specific victim. Namely, price effects of cartel membership differ across

cartelists as long as own-price and cross-price elasticities of the respective demands

differ. Firms that are symmetric from an industrial organization perspective then can

be non-symmetric players from a game theoretic perspective.

For illustration consider n otherwise identical firms on a Salop circle. Think of

cement plants that are equally spaced on the shores of an unshippable lake. They

sold cement at inflated prices to local construction companies around the lake. The

cartel was busted and a customer of firm h sues. The relative responsibilities of this

customer’s home firm h and of a distant firm j’s are tied to the counterfactual price that

the customer would have paid had h or respectively j refused to participate. Unless

transportation costs are zero, cartel membership of the northernmost vendor has

3One can also take a more dynamic view. Harm is often quantified by monthly but-for estimations
(e.g., Bernheim 2002) and so might responsibility if membership, demand, or costs varied over time.
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smaller effect on overcharges faced by customers in the south than does membership

of southern vendors, and vice versa (see, e.g., Levy and Reitzes 1992). The more

intensely two firms would have competed in the absence of the cartel, the greater the

effect of their collusion. The counterfactual prices that the customer would have paid

if h or if j had not joined the cartel, but just best-responded to its practices, thus vary

by location. And so do their responsibilities for the customer’s harm.

Of course, a symmetric market structure implies that obligations which h and j

have in compensating each others’ customers are the same. So mutual redress claims

cancel if all constructors sue (or a uniform measure of them). However, they do not

cancel in almost all other situations – e.g., if just some construction companies in the

south go to court. A general proportioning method hence requires that responsibility

can be attributed to cartel members for the price overcharge on each single product in

the cartel’s portfolio. Asymmetries in cost or demand make this even more important.

The described problem of proportioning overcharges extends to prices of cartel

outsiders who best-responded to the infringement. The respective umbrella losses4

are legally acknowledged in the EU (CJEU C-557/12 2014) and have also been

claimed successfully before several US courts. Their compensation is not linked to

transactions with any cartelist. Moreover, a firm’s relative responsibility stays relevant

if litigants settle: claims against co-defendants are reduced by the settling defendant’s

responsibility for harm (Damages Directive, recital 51).

3. The Shapley Value as a Tool for Proportioning Damages

3.1. Preliminaries

A damage proportioning problem can be formalized as a transferable utility (TU) game

where an overcharge damage v(N) caused by a cartel N = {1, . . . ,n} is to be divided

among the firms involved.5 For every coalition S ⊆ N of players who might collaborate

with one another, v(S) describes damage inflicted if firms i ∈ S coordinate their actions

while firms j ∈ NrS maximize their respective profits in competitive fashion. Mapping

v : 2N
→ R is the characteristic function of TU game (N, v). When overcharge damages

4See Inderst et al. (2014) and Holler and Schinkel (2017) on the theory of umbrella losses. Bos and
Harrington (2010) and de Roos and Smirnov (2021) analyze cartels with partial market coverage.

5The relevant market may comprise firms j < N which did not partake in the cartel. They need not
contribute to compensations and matter as exogenous co-determinants of damage rather than players.
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for m different goods are to be proportioned, we in principle need to consider m

different TU games. So if helpful, we may write (N, v j) in order to highlight that

overcharges for a particular good j are considered.

For strict subsets of N, v(S) (or v j(S)) reflects a counterfactual. This is necessary

because responsibility is driven by the fact that the overcharge in question would

have differed from v(N) if some firms had refused to collude. Directive 2014/104/EU,

recital 46, explicitly acknowledges the role of counterfactual scenarios for the deter-

mination of harm v(N). Defining v(S) also for sets S ⊂ N extends the pertinent logic

from quantifying harm to quantifying contributions to harm.

Naturally, v(S) = 0 if the set S of collaborators is empty or comprises but a single

firm, i.e., if |S| = 1. For other coalitions S ⊂ N, a damage estimate v(S) is needed.

Intertemporal variation in cartel participation may help obtaining it but the most

versatile option is market simulation analysis. This is rather well-established in

merger control (cf. Budzinski and Ruhmer 2010): parameters of a structural model

of price or quantity competition are estimated based on pre-merger observables;

these generate equilibrium predictions for when a subset of firms internalize mutual

profit externalities. Analogous analysis of cartel behavior is comparatively rare (see

de Roos 2006) but respective calibrations can draw not only on pre-cartel (like pre-

merger) observables but also observations during and after the cartel’s operation.

Former members may have an interest to disclose information if they expect lower

contributions than under some ad hoc proportioning. Sensitive data could be pooled

by a trusted intermediary who helps settling mutual claims.

We take no stance on how sophisticated estimates v(S) ought to be in practice. For

instance, the analysis of a hypothetical scenario with a sub-cartel S , N may consider

the question of whether S satisfies suitable stability conditions, and put v(S) = 0 if not.

The illustrations below will keep things simple, but there are reasons to expect that

even simpler modeling can still improve on naı̈ve proportioning by market shares.6

Note that each number v(S) with i < S reflects a scenario for how the market might

have evolved if there had been no infringement by firm i. It is both possible that firm

j , i would then have joined the cartel anyhow ( j ∈ S) or that it would have stayed

legal too ( j < S). These scenarios need not have equal probability. But all partial cartels

S ⊆ Nr {i} are, in principle, relevant in assessing i’s contribution to the situation which

6See Napel and Welter (2021) on the extent to which even binary approximations ṽ of an unknown
characteristic function v can identify responsibility better than relative sales, revenues, etc.
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calls for compensation, hence i’s relative responsibility.7

3.2. Desirable Properties of Responsibility-Based Allocations

With damages in a factual cartel scenario and related counterfactuals described by

(N, v), a damage proportioning rule is a mapping Φ from any conceivable cartel damage

problem (N, v) to a vector Φ(N, v) ∈ Rn, i.e., it is a value of the corresponding TU game.

The main restriction that the cartel context imposes is that v({i}) = 0 for all i ∈ N.

As prices of substitute goods are usually higher for bigger cartels,8 one can take v

to be monotonic in S. Component Φi(N, v) denotes the part of the compensation for

damages v(N) which cartel member i ∈ N must contribute.

That a proportioning rule reflects relative responsibilities can be translated into

three formal properties of Φ. The first one is straightforward. Suppose that

participation or not of a particular firm i would never have made a difference to

the damage in question. That is, removing player i if i ∈ S or adding player i if

i < S does not change v(S). Then given that i’s conduct has no effect on damage,

the canonical conditions for i being responsible are not met (see Feinberg 1970).

Hence, no responsibility-based obligations to contribute follow. A player i for whom

v(S) = v(S r {i}) for every S ⊆ N is known as a null player. The first requirement for

rule Φ to be based on relative responsibility hence is the null player property:

Φi(N, v) = 0 whenever i is a null player in (N, v). (NUL)

Presumably, supply and demand conditions in real markets are rarely compatible with

a convicted cartel member being a null player. But (NUL) conducts a valid thought

experiment. It also formalizes a certain robustness to misspecification of the relevant

market. For instance, a large cartel may have caused damage in several regions with

independent costs and demand. If a firm is accidentally included as ‘player’ in a

region where it had no role, (NUL) ensures it need not contribute there.

As responsibility derives from the causal links between cartel membership and the

7It is also conceivable that several partial cartels would have formed if i had refused to join. This
might be accommodated by considering extensions of the Shapley value to partition functions V from
the set of partitions P = {P1, . . . ,Pr} of N to estimated damages V(P). See Ray and Vohra (1999).

8See Davidson and Deneckere (1984) and Deneckere and Davidson (1985). Superadditivity and
convexity of v can be natural assumptions, too: to ensure that new members want to join a cartel and
existing members accept them, v must be superadditive. For cartels that included all big players,
incentives to join have plausibly increased in size (convexity).
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harm suffered, a second straightforward requirement is that i’s damage share should

be determined by these links – and these links alone. Namely, presuming that v

correctly describes factual damages as well as the relevant counterfactuals, Φi(N, v)

shall be a function only of i’s marginal contributions v(S) − v(S r {i}) in (N, v). The

corresponding formal property of marginality, introduced by Young (1985), is

Φi(N, v) = Φi(N, v′) whenever v(S) − v(S r {i}) = v′(S) − v′(S r {i}) holds for all S ⊆ N.

(MRG)

Marginality does not pin down how Φi(N, v) should depend on the differences that i

makes to various coalitions. For instance, (MRG) does not imply (NUL).

If contributions of two firms i and j to the generation of damages are symmetric,

i.e., v(S ∪ {i}) = v(S ∪ { j}) for every coalition S ⊆ N r {i, j}, their responsibilities are the

same. So Φ should satisfy symmetry:9

Φi(N, v) = Φ j(N, v) whenever i and j are symmetric in (N, v). (SYM)

Irrespective of whether a division of damages reflects responsibility of the involved

players or follows alternative principles, firms’ contributions should add up to v(N).

In the context of TU games, this is called efficiency of a value:∑
i∈N

Φi(N, v) = v(N). (EFF)

Efficiency and symmetry imply Φ1(N, v) = Φ2(N, v) = 1
2v(N) if N = {1, 2}, i.e.,

participants to any 2-firm cartel (see, e.g., Argenton 2019) must contribute equally.

This may at first seem counterintuitive when market shares, costs, or profits are

asymmetric, but exit by either firm would have restored duopolistic competition.

Firms’ shares should not depend on whether damages are proportioned for one

or many units, expressed in US dollar or euro, whether they are trebled, already

include interest, etc. Moreover, if the same cartel N caused harm to customers in

several markets – reflected by a characteristic function v for market 1, v′ for market 2,

etc. – then the total contribution of firm i ∈ N should not depend on whether the

proportioning rule is applied to damages in one market at a time or simultaneously.

Different ‘markets’ could here refer to different plaintiffs, different products in the

cartel’s portfolio, or distinct quantities of the same product. Scale invariance and

9Deviations from symmetry may be necessary if firms played highly asymmetric roles in the
organization of the cartel (e.g. as ringleader) or when leniency provisions provide liability exemptions.
One can then turn to weighted Shapley values (Shapley 1953b; Kalai and Samet 1987).
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additivity combine to linearity:

Φ(N, λ · v + λ′ · v′) = λ ·Φ(N, v) + λ′ ·Φ(N, v′) (LIN)

for any scalars λ, λ′ ∈ R and any characteristic functions v, v′.

3.3. Shapley Value and Decomposition by Average Damage Increments

Above properties imply that a responsibility-based proportioning method must lead

to contributions Φi(N, v) that equal

ϕi(N, v) :=
∑
S⊆N

(s − 1)!(n − s)!
n!

·

[
v(S) − v(S r {i})

]
(1)

for each i ∈ N and s = |S|. ϕ(N, v) is the Shapley value of (N, v). Shapley (1953a) showed

that any allocation rule that satisfies (NUL), (SYM), (EFF) and (LIN) is equivalent

to ϕ. Young (1985) proved that the same is true if (MRG), (SYM) and (EFF) are

satisfied.10 Formula (1) may look unwieldy but weights (s − 1)!(n − s)!/n! on marginal

contributions are a logical consequence of the desired properties.

It is little-known – but will below be very practical – that an equivalent way of

writing eq. (1) is

ϕi(N, v) =
v(N)

n
+

1
n

n−1∑
s=1

[
v̄i(s) − v̄i�(s)

]
(2)

where

v̄i(s) :=
(
n − 1
s − 1

)−1 ∑
S3i, |S|=s

v(S) (3)

captures the average damages caused by coalitions of size s which include firm i and

v̄i�(s) :=
(
n − 1

s

)−1 ∑
S=i, |S|=s

v(S). (4)

those which exclude firm i.11 Abbreviating κ(s) := (s − 1)!(n − s)!/n! = 1
n ·

(n−1
s−1

)−1
, eq. (2)

10See, e.g., Maschler et al. (2013, ch. 18). To verify that Shapley’s uniqueness result extends to
the class of damage proportioning problems, note that cartels in which i ∈ T ⊆ N produce perfect
substitutes with competitive price p∗ = 0 and cartel price pc = 1 while all j < T operate in unrelated
markets define the required carrier games (N,uT).

11The decomposition in eq. (2) is distinct from those suggested by Kleinberg and Weiss (1985) and
Rothblum (1988). It may here be stated for the first time.
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follows from

ϕi(N, v) =
∑
S⊆N

κ(s) ·
[
v(S) − v(S r {i})

]
=

∑
S⊆N
S3i

κ(s)v(S) −
∑
S⊆N
S=i

κ(s + 1)v(S) (5)

= κ(n)v(N) +

n−1∑
s=1

[∑
S3i
|S|=s

κ(s)v(S) −
∑
S=i
|S|=s

κ(s + 1)v(S)
]

=
v(N)

n
+

1
n

n−1∑
s=1

[
v̄i(s) − v̄i�(s)

]
.

Equation (2) simplifies further because a ‘cartel’ of size s = 1 leaves prices constant,

i.e., v̄i(1) = v̄i�(1) = 0 for each i ∈ N. We thus obtain:

Shapley proportioning Rule Firm i must contribute

ϕi(N, v) =
v(N)

n
+

1
n

n−1∑
s=2

[
v̄i(s) − v̄i�(s)

]
(6)

to compensation of a cartel damage v(N) in order to reflect i’s relative responsibility and to

share harm in a scale-invariant additive way.

Proportioning by relative responsibility of the infringers – formalized by (NUL),

(MRG) and (SYM), plus (EFF) and (LIN) – thus means: start out with equal shares

per head; then add an n-th of the average size-specific damage increments that arise due

to a given firm i’s participation. This summand accounts for asymmetric effects on

harm, which can arise even in symmetric market environments (cf. Section 4).

Equation (6) provides a useful perspective on ϕi but can also facilitate its calcula-

tion: possible symmetry among players reduces the sum of 2n differences in eq. (1) to

less than n ones in (6). This extends when asymmetries are such that i’s increments for

specific coalition sizes s can be expressed as a function of ‘aggregate asymmetry’ among

other firms (see Subsection 5.3). The calculation is further simplified if cartel sizes s

below some threshold s̃ are unstable (Bos and Harrington 2010), or if exchangeability

of firms implies that v̄i(s) − v̄i�(s) is zero. For instance, the summand vanishes in a

homogeneous Bertrand or Cournot oligopoly or when n = 2; equal shares follow.

4. Unequal Responsibility of Symmetric Differentiated Firms

By contrast, unequal responsibility and Shapley shares in compensation follow when

n > 2 symmetric firms produce differentiated goods. This holds even for a very strong

form of symmetry, where differentiation generates greater own-price than cross-price

effects but firms are otherwise identical.
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Specifically, let firms 1, . . . ,n simultaneously choose strategies y1, . . . , yn that jointly

determine prices pi and profits Πi for all i ∈ N. p = (p1, . . . , pn) and Π = (Π1, . . . ,Πn)

are taken to be smooth functions of y = (y1, . . . , yn). The two focal cases are

differentiated price competition where pi(y) ≡ yi and quantity competition where

yi denotes firm i’s output. However, yi might also refer to some marketing activity,

product characteristic, firm i’s geographic radius of operation, etc. We make the

following general assumptions:

A1. Price pi and profits Πi are affected identically by own strategy yi for all firms

i ∈ N and also by all strategy choices y j of the respective other firms j , i, that is

pi(y1, . . . , yn) ≡ p j(y%(1), . . . , y%(n)) and Πi(y1, . . . , yn) ≡ Π j(y%(1), . . . , y%(n)) (I)

for each i , j and all permutations % : N→ N with %(i) = j and %( j) = i.12

A2. For all i , j ∈ N, ∣∣∣∣∣∂pi

∂yi

∣∣∣∣∣ >
∣∣∣∣∣∣∂pi

∂y j

∣∣∣∣∣∣ (IIa)

and
∂Π j

∂yi
·
∂pi

∂yi
> 0. (IIb)

Condition (IIa) is trivially satisfied for price competition and otherwise formalizes that

inverse demand responds more to changes of the quantity (or product characteristic,

delivery range, etc.) of the variety in question than to that of others. Condition (IIb)

requires yi to change own price pi and other firms’ profits Π j in the same direction:

e.g. for quantity competition, greater output yi lowers pi as well as the profits of firms

j , i; for price competition, higher prices yi = pi raise profits of j.

A3. For all S ⊆ N there exists a unique Nash equilibrium yS = (yS
1 , . . . , y

S
n) such that

– yS
i = yc if i ∈ S, where yc solves the first order condition

dΠS

dyi
=

∑
j∈S

∂Π j

∂yi
= 0

for maximization of joint profit ΠS(y) =
∑

k∈S Πk(y) by cartel S;

12For instance, each variety i could be the personal favorite of an equal share of consumers who
regard varieties j , i as equally close substitutes. The symmetry in A1 is stronger than in the Salop
model: some permutation % with %(i) = j and %( j) = i satisfies (I) there, but not all do.
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– yS
i = yo if i < S, where yo solves the first order condition

∂Πi

∂yi
= 0

for individual profit maximization by an outsider to cartel S.

Sufficient conditions for the equilibrium in A3 to exist are provided in Section 5.

Proposition 1. Given A1–A3, let pi(s) (pi�(s)) equal the equilibrium price for good i if firm i

is (is not) part of a cartel with s ∈ {2, . . . ,n − 1} members. Then pi(s) > pi�(s).

Proof. Inequality (IIb) implies that firms’ strategies either lower their own prices,

∂pi/∂yi < 0, and have a negative externality on each other’s profits, ∂Π j/∂yi < 0,

as for quantity competition; or that ∂pi/∂yi > 0 and ∂Π j/∂yi > 0. In the former

case, internalization of the negative profit externality in a cartel with s ∈ {2, . . . ,n −

1} members implies a smaller individual action or output choice yc < yo for cartel

members than outsiders (see A3); otherwise yc > yo.

We first address yc < yo with ∂pi/∂yi < 0 and ∂Π j/∂yi < 0. Let S = {1, . . . , s} w.l.o.g.

and consider the straight line L which connects ŷ = (yo, yc, . . . , yc, yo, . . . , yo, yc) to

yS = (yc, yc, . . . , yc, yo, . . . , yo, yo) in the space of output choices. L can be parameterized

by

r(t) = (yo
− t, yc, . . . , yc︸             ︷︷             ︸

s terms

, yo, . . . , yo, yc + t︸             ︷︷             ︸
n−s terms

) (7)

with t ∈ [0, yo
−yc], i.e., we simultaneously decrease firm 1’s action and increase firm n’s

action by identical amounts as we move along L. The gradient ∇pn =
(
∂pn

∂y1
, . . . , ∂pn

∂yn

)
of

function pn can be used in order to evaluate the price change caused by switching from

ŷ to yS. In particular, the (Stokes) gradient theorem for line integrals (see, e.g., Protter

and Morrey 1991, Thm. 16.15) implies

pn(yS) − pn(ŷ) =

∫
L
∇pn dr =

∫ yo
−yc

0
∇pn(r(t)) · r′(t) dt (8)

=

∫ yo
−yc

0

(∂pn

∂y1
, . . . ,

∂pn

∂yn

)∣∣∣∣∣∣
y=r(t)

·

(
− 1, 0, . . . , 0, 1

)
dt (9)

=

∫ yo
−yc

0

[
∂pn(r(t))
∂yn

−
∂pn(r(t))
∂y1

]
dt < 0. (10)

The inequality follows from (IIa): firm n’s own strategy changes have bigger price

effects than changes by competitor firm 1.

11



A1 then implies

p1(s) := p1(yc, yc, . . . ,yc, yo, . . . , yo, yo) = pn(yo, yc, . . . , yc, yo, . . . , yo, yc) (11)

= pn(ŷ) > pn(yS) = pn(yc, yc, . . . , yc, yo, . . . , yo, yo) := pn�(s).

That is, the price p1(s) of good 1 when its producer is one of s exchangeable cartel

members exceeds the price pn�(s) of good n when firm n is not part of a cartel with

s members. And, also by A1, we have p1�(s) = pn�(s) and p1(s) = pn(s). So we can

conclude p1(s) > p1�(s) from (11). The same applies to any other firm i, and we obtain

pi(s) > pi�(s) for all s ∈ {2, . . . ,n − 1} as claimed.

For yc > yo, the specific case pi(y) = yi directly implies the claim. The general case

of ∂pi/∂yi > 0, ∂Π j/∂yi > 0 is analogous to yc < yo: reversed orientation of the integral

from t = 0 to yo
− yc < 0 in (10) and the reversed sign of integrand ∂pn/∂yn − ∂pn/∂y1

cancel. �

Now focus on the per unit damage vh(N) that accrued to a customer who bought

her home product h and paid cartel price pc = ph(yN) instead of competitive price

p∗ = ph(y∅). The counterfactual average damages implied by partial cartels of size s

that include and exclude firm h are v̄h(s) = ph(s)− p∗ and v̄h�(s) = ph�(s)− p∗, respectively.

Proposition 1 implies

v̄h(s) − v̄h�(s) = ph(s) − ph�(s) > 0 for any s = 2, . . . ,n − 1. (12)

So from eq. (6) we can conclude

Proposition 2. Given A1–A3, consider an overcharge damage vh(N) that was suffered on

purchases from firm h ∈ N after n ≥ 3 symmetric producers of differentiated goods formed

cartel N. Then

ϕi(N, vh)

>
vh(N)

n if i = h,

< vh(N)
n if i , h.

(13)

That is, firm h is always responsible for more than 1/n-th of harm to its own (home) customers.

5. Proportioning by Responsibility in Linear Market Settings

Shapley proportionings require estimates of counterfactual damages for all conceiv-

able partial cartels (see, e.g., de Roos 2006). We illustrate this here for situations in

which the costs and demand for differentiated goods are linear. We conjecture that
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parameter restrictions in analogy to, e.g., the proportionality condition of Epstein and

Rubinfeld (2001) could reduce the data requirements in practical cases sufficiently

to be applicable. If the producers of differentiated products face at most one kind

of asymmetry, closed-form expressions for the Shapley shares can be derived via

eq. (6).13 This is often impossible in other applications of the Shapley value. The

parametric solutions allow to derive upper and lower bounds for the responsibility-

based contribution by a firm to harm of its own and of other firms’ customers,

respectively. They also facilitate assessing the degree to which, e.g., cartel-period

revenue shares might serve as proxies of relative responsibility in Section 6.

5.1. Model

Consider a cartel of n ≥ 3 suppliers where each firm i ∈ N = {1, . . . ,n} produces a

single good. Firm i’s costs are given by

Ci(qi) = γiqi for γi ≥ 0. (14)

Demand at price vector p = (p1, . . . , pn) is described by

Di(p) = ai − di · pi +
∑

j∈Nr{i}

bi j · p j for ai > γi, di > 0, and bi j > 0 for all j , i. (15)

We presume Di(γ) > 0, i.e., demand is positive when all firms price at cost. This

amounts to assuming a + (n−1)bγ > dγ in the symmetric case with γi = γ, ai = a, di = d

and bi j = b for all i , j ∈ N. Firms set prices simultaneously à la Bertrand. If some

group S ⊆ N forms a cartel, outsiders j < S are assumed to somehow become aware

of this and to best-respond to cartel prices, which is already anticipated by S.

Members of S ⊆ N maximize the sum of their profits

ΠS(p) =
∑
i∈S

(pi − γi)Di(p) (16)

with corresponding first-order conditions

∂ΠS(p)
∂p j

= D j(p) +
∑
i∈S

(pi − γi)
∂Di(p)
∂p j

for all j ∈ S. (17)

Analogous expressions hold if j is a cartel outsider. It is sufficient for existence

and uniqueness of a Nash equilibrium that a uniform increase of all prices and

13Quadratic costs do not change findings much: Proposition 3 below then involves cost parameter γ
but remains independent of a. Later expressions get significantly more unwieldy, however.
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a unilateral increase of any single price respectively decrease individual and total

demand.14 Formally, this requires
∑n

j=1 ∂Di/∂p j < 0 and
∑n

j=1 ∂D j/∂pi < 0, i.e., we will

assume

αi := di/
∑
j,i

bi j > 1 and di >
∑
j,i

b ji for all i ∈ N. (18)

This simplifies to α := d
(n−1)b > 1 in the symmetric case (γi = γ, ai = a, di = d, bi j = b).

Products are relatively good substitutes when αi is small; then price increases by

one firm significantly raise profits for other firms. A cartel internalizes this. So the

price pi set by cartel member i will be the higher, the smaller αi.

For any S ⊆ N, the (unique) Nash equilibrium pS summarizes equilibrium prices

pS
i of all products i ∈ N assuming firms in S coordinate and the rest acts competitively.

The per unit overcharge suffered by a customer who bought product i is denoted by

vi(N) = pN
i − p∅i .

5.2. Symmetric Case

Own and cross price elasticities for the considered goods vary even under symmetry

given α > 1. We hence distinguish the home firm h that produced the good for which

a fixed customer suffered harm from those cartel members j , h that were not part

of their transaction. We focus on the per unit overcharge vh(N) for good h. After

solving for the Nash equilibria pS implied by (14) – (18) for all S ⊆ N, the percentages

of vh(N) for which firms h and j are respectively responsible, ρh ∗
h := ϕh(N, vh)/vh(N)

and ρh ∗
j := ϕ j(N, vh)/vh(N), can be determined in closed form (see the Appendix):

Proposition 3. Suppose firms are symmetric in the linear market environment defined by

equations (14), (15) and (18). Let h be the producer of the good for which overcharge damages

are to be proportioned, and j be any of h’s n − 1 competitors. The relative responsibilities for

harm then are

ρh ∗
h =

1
n

+
n − 1

n

n−1∑
s=2

(s − 1) · (4α2
− 6α + 2)

4α2(n − 1)2 − 2(n + s − 3)(n − 1)α + s(n − s) − 2(n − 1)

and ρh ∗
j = (1 − ρh ∗

h )/(n − 1).

The common unit cost γ and demand intercept a have no effect on h’s Shapley

share. It is determined only by the ratio α of own and cross-price parameters. If this

14See Vives (1999, Sec. 6.2) and Federgruen and Pierson (2011, Cor. 4.6).
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Figure 1: Share ρh ∗
h of overcharge damages on good h attributed to firm h for given

differentiation parameter α (assuming d = 2, b = 2/[(n − 1)α])

degree of differentiation α is low, cartel participation by all firms is important. In the

limit, each firm is essential for maintaining an overcharge and affects damage equally:

lim
α→1

ρh ∗
h =

1
n

and lim
α→1

ρh ∗
j =

1
n

for j , h. (19)

If, in contrast, firms produce highly differentiated goods, we have

lim
α→∞

ρh ∗
h =

1
n

+
1

n(n − 1)

n−1∑
s=2

(s − 1) =
1
2
. (20)

One can check that ρh ∗
h is strictly increasing in α. We therefore obtain:

Corollary 1. If vh(N) is the compensation obtained by a customer of firm h ∈ N, then

proportioning by relative responsibility calls for firm i to contribute

ϕi(N, vh) ∈


(

vh(N)
n , vh(N)

2

)
if i = h,(

vh(N)
2(n−1) ,

vh(N)
n

)
if i , h.

(21)

Figure 1 illustrates the behavior of ρh∗
h for intermediate degrees of differentiation.

5.3. Asymmetric Case

The bounds in Corollary 1 provide guidance for mildly asymmetric markets by

continuity. When firms are sufficiently heterogeneous, though, it is possible that

home firm h has lower responsibility for harm of its customers and will be assigned

a smaller share of compensation than its competitors, i.e., ϕh(N, vh) < vh(N)/n. This

happens when the cross-price effects involving firm h are sufficiently smaller than
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those between other cartel members. We can, e.g., have three firms such that demands

of firm 1 and 2 involve high mutual cross-price reactions b12 and b21, while there are

only small linkages bi3 and b3i with firm 3 (i , 3). Firm 3’s cartel participation matters

for overcharges on p1, p2 and p3 but a significant increase of p3 would have occurred

even if firm 3 had not been part of the cartel and had just best-responded. This

part of v3(N) is caused by price increases on goods 1 and 2, which are mostly driven

by shutting down competition between firms 1 and 2. The latter hence had greater

influence on v3(N) than firm 3 itself.15 Therefore, asymmetry in cross-price effects does

not come with useful bounds on responsibilities.

Asymmetry in demand parameters ai or costs γi can be dealt with better, although

calculations become tedious. For instance, supposing γ = 0 and that firm-specific

demand intercepts ai are the only asymmetry at hand, we have:

Proposition 4. Suppose firms are symmetric except for the demand intercepts a1, . . . , an in

the linear market environment defined by equations (14), (15) and (18) with γ = 0. Firm h’s

Shapely share then is

ρh ∗
h =

1
n

+
1

n(n − 1)

n−1∑
s=2

(s − 1)
[
6α(n − 1) + (s + 4 − n) +

(
4α2(n − 1)2 + τs

)
ā−h
ah

]
(α − 1)(2α − 1)(

4α2(n − 1) − (2n − 6 + 2s)α +
ηs

n−1

)[
(3α + 2−n

n−1 ) + (2α2(n − 1) + 1) ā−h
ah

]
with ā−h :=

∑n
i,h ai/(n − 1), τs := (n − s − 2) and ηs := s(n − s) − 2(n − 1).

Ratio ā−h/ah relates the market sizes of firm h and its competitors: a large ratio

means firm h is comparatively small, a ratio close to zero that h’s market is big. It can

be checked that ρh ∗
h is maximized when (i) firms produce highly differentiated goods,

i.e, α→∞, and (ii) when firm h’s market size is massive, that is, lim ah/ā−h → 0. Then

firm h is responsible for half of the damage to its customers. Contrary, ρh ∗
h is minimized

when goods are close substitutes and firm h’s market size is small. Then, firm h is

responsible for around 1/n-th of its own customers’ damage. Similar reasoning for

firms j , h yields

Corollary 2. Suppose firms are symmetric except for the demand intercepts a1, . . . , an in

the linear market environment defined by equations (14), (15) and (18) with γ = 0. If vh(N)

15For instance, assume ai = 10, di = 3, γi = 0 for i ∈ {1, 2, 3}, b12 = b21 = 2, b13 = b23 = b31 = b32 = 0.5
and consider v3(N). Then Shapley shares evaluate to ρ3 ∗

1 = ρ3 ∗
2 ≈ 35.1% > ρ3 ∗

3 ≈ 29.8%.
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Figure 2: Shares ρh ∗
i for cost leaders i ∈ {1, 2} and laggards j ∈ {3, 4}

reflects damages to a customer of firm h ∈ N, then

ϕi(N, vh) ∈


(

vh(N)
n , vh(N)

2

)
if i = h,(

0, vh(N)
2

)
if i , h.

(22)

The bounds in eq. (22) also apply to firms which are symmetric in all but technology.

This case is illustrated in Figure 2. It considers responsibility for per unit overcharges

of v1(N) and v3(N) for a cartel of two low-cost firms (1 and 2) and two high-cost

producers (3 and 4) with common parameters a = 10, d = 2, and b = 2/(3α). No matter

whether the selling firm has (a) low costs γ1 = γ2 = 1 or (b) high costs γ3 = γ4 = 5,

it bears responsibility for 25% to 50% of overcharges on its product, and always the

greatest share.

6. Comparison to Proportioning by Market Shares

A simple and reliable proportioning heuristic could save the effort of above calcu-

lations. Perhaps market shares, which are comparatively easy to obtain, are a good

proxy for whose cartel participation is responsible for which proportion of damages, at

least under some identifiable circumstances? If yes, should we use sales or revenues?

From the cartel or competitive regime? Or perhaps better use a profit measure?

We will address these questions by a range of numerical simulations. We already

know from the above analysis of symmetric situations that respective (symmetric)
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market shares clash with firms’ asymmetric responsibilities for harm of a single

customer who purchased only one good (e.g. compare market share 1/n to ρh ∗
h in

Figure 1 if α > 1). So to give proportioning heuristics a good shot we will assume

that all customers of the detected cartel received full compensation. Firms’ over and

under-contributions relative to the product-specific Shapley shares can then cancel

out for a given heuristic across products. In particular, a division by heads perfectly

matches relative responsibility in the aggregate if firms are symmetric.

So let us consider asymmetric firms. Our benchmark are aggregate payments

under Shapley proportioning for each firm i ∈ N,

Φi :=
∑
j∈N

ϕi(N, v j) =
∑
j∈N

qc
j · v

j(N) · ρ j∗
i (N, v j), (23)

and we compare this to firm i’s payment Hρ
i if the total damage

D :=
∑
i∈N

qc
i · v

i(N), (24)

is proportioned by a market share measure ρ, i.e. to Hρ
i := ρi · D (with qc

i denoting

firm i’s cartel sales). Firms’ respective over and under-payments are summed and

normalized to give an index of aggregate mis-allocation of damages

Mρ :=
∑
i∈N

|Φi −Hρ
i |

/
D. (25)

This index is proportional to the expected mis-allocation of compensation for a unit

purchase by a randomly drawn customer, for a customer who made purchases from

all firms in proportion to their cartel sales, or when all customers go after the cartel

with identical positive probability.

In Figure 3, we start from the baseline scenario a = 10, γ = 1, d = 2, b = d/(3α)

and break symmetry for one parameter at a time. The two top panels consider

heterogeneity in firm-specific market sizes ai. Panel (a) involves two large and two

small firms; in panel (b) all firms differ. An equal per head allocation ρ0 non-surprisingly

performs well when differentiation is very low. It soon loses out, though, to allocating

damages in proportion to market shares based on competitive sales ρ4 and to market shares

based on cartel sales ρ2. Market shares determined by cartel revenues ρ1 or competitive

revenues ρ3 produce very high mis-allocations at all levels of differentiation. Only

proportioning by cartel profits ρ5 is worse.

Panels (c) and (d) assume an intermediate and a big cost asymmetry between firms 1
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Figure 3: Mis-allocation Mρ by different heuristics considering i = 1, 2 and j = 3, 4

and 2 vs. firms 3 and 4. The deviations from the Shapley payments, aggregated for

each firm, are significantly higher for the big asymmetry in (d) than the smaller one

in (c).16 Revenue-based market shares ρ1 or ρ3 and sales-based competitive market

shares ρ4 here perform the best.

Panel (e) assumes firms 3 and 4 face bigger own-price elasticities than firms 1 and 2.

Market shares ρ2 and ρ3 based on cartel sales or competitive revenues then are closest

16The kink that is visible in panel (c) for ρ3 – or ρ2 in (e) – results from cancellation of product-specific
deviations at the firm level when these switch from having opposite to identical signs.
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to the Shapley benchmark. The final panel (f) assumes heterogeneity in cross-price

effects: firms 1 and 2 face a fixed cross-price parameter of 1/4, competition between

firms 3 and 4 is more intense by some factor β. In contrast to the five environments

(a) – (e) in which its relative ranking was consistently low, proportioning by cartel

profits ρ5 here comes closest to reflecting the Shapley shares.

The key message of the ups and downs and, notably, the changing ranking of

Mρ0
, . . . ,Mρ5 in Figure 3 is that no market share heuristic provides a reliable short-cut

to relative responsibilities for harm. This holds even when contributions are evaluated

at the aggregate market level rather than for harm suffered by an individual litigant.

So tempting as proportioning compensation payments by cartel sales, revenues, or

profits may be, we see that market shares generally fail to reflect responsibility shares.

7. Concluding Remarks

The results in this paper have been obtained under the assumption that damages in

“What if some cartel members had refused to participate?”-scenarios can somehow be

quantified. This is a limitation. But counterfactuals provide the basis of any causality-

based ascription of responsibility, as well as of the quantification of harm and a victim’s

compensation in the first place (see Directive 2014/104/EU, recital 46).

Depending on the case at hand, refined estimates of per unit overcharges may be

obtained from a structural market model that has been calibrated to a sufficiently rich

panel of data (see de Roos 2006). The assessment by an experienced practitioner is

still skeptical: “... for almost all real-life cases, such a data panel will be exceedingly

difficult or downright impossible to obtain” (Bornemann 2018, recital 124).

In our view, it is nonetheless relevant to study ideal worlds with accurate

assessments v j(S) for counterfactual sub-cartels S: one can gain structural insights

(such as the bounds derived above) and, importantly, assess the quality of more

pragmatic suggestions. Without a sound benchmark it is unclear why proportioning

by “... sales of the product during the conspiracy ...”, as proposed by Baker (2004)

early on, should reflect relative responsibilities any better than, say, profit shares or

a division by heads. The numerical analysis in Section 6 demonstrates, alas, that any

market share heuristic provides a blurred reflection of responsibility at best.

A possible way forward is to anyhow proportion by (an arbitrary choice of) market

shares but to stop pretending that robust links to causality-based responsibility exist.
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Another and our preferred alternative would be to capture causal links between actions

and harm by applying the Shapley value at least to first approximations of applicable

counterfactuals. In a companion paper, approximations of v j(S) that partition partial

cartels S ⊂ N into binary categories (namely, S is either able to sustain significant

overcharges or not) turn out to perform surprisingly well (Napel and Welter 2021).

We conjecture that modestly finer classifications – such as S causing ‘significant’ vs.

‘intermediate’ vs. ‘insignificant’ harm to buyers of good j – are still tractable but come

very close to implementing Directive 2014/104/EU’s provision: when cartel victims are

compensated, jointly liable co-infringers need to contribute according to their “relative

responsibility for the harm caused”.

21



A. Appendix – Proofs of Propositions 3 and 4

Proof of Proposition 3. Suppose n ≥ 3 firms are symmetric in the linear market

environment defined by equations (14), (15) and (18). The cartel price then evaluates

to

pc := pN
i =

(
a

d − (n − 1)b
+ γ

)/
2 (A.1)

for each differentiated product i ∈ N.17 Corresponding competitive Bertrand prices

are

pB := p∅i =
a + dγ

2d − (n − 1)b
for all i ∈ N. (A.2)

This implies per unit cartel overcharges of

vi(N) = pc
− pB =

a/d − γ(1 − 1
α )

4α − 6 + 2/α
with α =

d
(n − 1)b

> 1 (A.3)

for each product i ∈ N. They are homogeneous of degree one in (a, γ) and strictly

decreasing in differentiation parameter α as well as in unit costs γ.

If there is a partial cartel S of size s = 2, . . . ,n − 1, equilibrium prices are

pS
i =


a(2d + b) + γ

(
2d2 + bd(3 − 2s) + b2(ns − n − s2 + 1)

)
4d2 − 2(n + s − 3)bd + b2ηs

if i ∈ S,

a(2d − sb + 2b) + γ
(
2d2
− bd(s − 2) − b2(s2

− s)
)

4d2 − 2(n + s − 3)bd + b2ηs
if i < S

(A.4)

with ηs = s(n − s) − 2(n − 1) ≥ −(n − 1).

Comparing the price pS
h of the home product h ∈ N paid by a suing customer in

case that the respective producer h is part of a cartel with s members, i.e., for h ∈ S, to

the respective price pS
h if h is not, i.e., for h < S, yields18

v̄h(s) − v̄h�(s) = ph(s) − ph�(s) =
b(s − 1)

(
a + (n − 1)bγ − dγ

)
4d2 − 2(n + s − 3)bd + b2ηs

> 0. (A.5)

Inserting this into eq. (6) gives the Shapley proportioning ϕh(N, vh) in absolute terms.

Dividing the latter by vh(N) yields h’s claimed Shapley share ρh ∗
h . �

17The detailed algebraic manipulations omitted here are available upon request.
18The three factors in the numerator are strictly positive. Invoking s ≤ n − 1 and ηs ≥ −(n − 1)

first, and d > (n − 1)b next, the denominator can be bounded below by 2d[2d − 2(n − 2)b] − b2(n − 1) >
2d[2(n − 1)b − 2(n − 2)b] − bd = 3bd > 0. Hence ph(s) − ph�(s) > 0.
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Proof of Proposition 4. Suppose n ≥ 3 firms are symmetric except for the demand

intercepts a1, . . . , an in the linear market environment defined by equations (14), (15)

and (18) with γ = 0. Then, firm h’s cartel price is

pC
h =

ahd − (n − 2)ahb + b(n − 1)ā−h

2(b + d)(d + b − bn)
(A.6)

with ā−h =
∑n

l=1,h al/(n − 1). Firm h’s corresponding competitive price is

pB
h =

2ahd − (n − 2)ahb + b(n − 1)ā−h

(2d + b)(2d + b − bn)
. (A.7)

A customer’s per unit cartel overcharge by the product h then is

vh(N) = pC
h − pB

h =
b(n − 1)[b(3d + 2b − bn)ah + (2d2 + b2n − b2)ā−h]

2(d + b)(2d + b)(d + b − bn)(2d + b − bn)
. (A.8)

It rises in the saturation level ah of firm h’s demand as well as in the average saturation

quantity ā−h of firms l , h. The corresponding Shapley value of firm h in proportioning

vh(N) is

ϕh =
vh(N)

n
+

1
n

n−1∑
s=2

b(s − 1)[b(6d + b(s + 4 − n))ah + (4d2 + τsb2)ā−h]
2(d + b)(2d + b)(4d2 − (2n − 6 + 2s)db + ηsb2)

(A.9)

with τs := (n− s− 2) and ηs := s(n− s)− 2(n− 1). Dividing ϕh by vh(N) and substituting

α = d
b(n−1) gives

ρh ∗
h =

1
n

+
1

n(n − 1)

n−1∑
s=2

(s − 1)
[
6α(n − 1) + (s + 4 − n) +

(
4α2(n − 1)2 + τs

)
ā−h
ah

]
(α − 1)(2α − 1)(

4α2(n − 1) − (2n − 6 + 2s)α +
ηs

n−1

)[
(3α + 2−n

n−1 ) + (2α2(n − 1) + 1) ā−h
ah

]
(A.10)

as claimed. �
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