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Abstract

Committee decisions on more than two alternatives much depend on the adopted aggregation
rule, and so does the distribution of power among committee members. We quantify how
different voting methods such as pairwise majority votes, plurality voting with or without
a runoff, or Borda rule map asymmetric numbers of seats, shares, voting weights, etc. to
influence on collective outcomes when individual preferences vary. Generalizations of the
Penrose-Banzhaf and Shapley-Shubik power indices are proposed and applied to elections
of the IMF Managing Director. Previous analysis of a priori power in binary voting is thus
extended to universal social choice rules.
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1 Introduction

The aggregation of individual preferences by some form of voting is commonplace
in politics, business, and everyday life. People are rarely aware, however, of how
much collective choices can vary with the adopted aggregation rule. For illustration
imagine a hiring committee that comprises three groups with six, five, and three
members each. Suppose they have strict preference relations Pi, i ∈ {1, 2, 3}, over
five applicants, a, b, c, d, and e, that rank these in the following decreasing orders:
aP1dP1eP1cP1b for members of group 1, bP2cP2dP2eP2a for group 2, and cP3eP3dP3bP3a
for group 3. If everyone votes sincerely according to these preferences (for informa-
tional or institutional reasons) then a receives the position under plurality rule with
6 vs. 5 vs. 3 votes for a, b, and c. A runoff vote between the plurality leaders a and b,
given that neither is supported by a majority, would make b the winner with a count
of 8 : 6. Candidate c, however, beats b and any other candidate in pairwise majority
votes. The Borda scoring rule singles out d as winner. And candidate e could win if the
approval voting method is applied.1 In other words, the hiring choice is entirely up to
which voting rule is used.

With enough information about preferences, each group might work out their
‘ideal’ voting method for the decision at hand: group 1 could try to impose plurality
rule in order to have its way, or group 3 might argue for pairwise comparisons. But
voting rules are often adopted in advance and for many decisions, not case by case.
The question this paper seeks to address is therefore: how does adoption of one
aggregation method rather than another affect a group’s success or influence a priori,
i.e., not yet knowing what will be the applicable preferences?

Can we say if small groups are generally enjoying greater leverage when commit-
tees fill a position, elect an official, or select a motion by plurality or pairwise votes?
Which rules from a given list of suggestions maximize (or minimize) the expected
influence of a particularly sized group in a committee, and which rule involves the
smallest misalignment between applicable voting weights and induced distribution
of influence? There is a huge literature on voting power but these questions have to
our knowledge not been addressed yet. We aim to change this. The goal is to quantify
how different aggregation methods such as plurality with or without a runoff, Borda
count, or Copeland rule map asymmetric voting weights to influence on outcomes

1Approval voting entails: (i) each voter indicates approval for an arbitrary subset of candidates
(e.g., group 1: {a, d, e}; group 2: {b, c}; group 3: {c, e}) ; (ii) the candidate with the most approvals wins
(6+3 for e). Formal definitions of the voting rules that we investigate will be given in Section 3.1 below.
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when individual preferences vary.
We build on tools that were developed for analysis of simple voting games with

binary ‘yes’-or-‘no’options. Namely, the Penrose-Banzhaf index (Penrose 1946; Banzhaf
1965) and the Shapley-Shubik index (Shapley and Shubik 1954) are prominent indica-
tors of voting power. They evaluate sensitivity of the collective choice to changes in a
given voter’s preferences. This sensitivity is operationalized as the likelihood of the
voter being pivotal or critical: flipping the individual vote would flip the collective
decision. Applications range widely and include, e.g., the US Electoral College, the
EU Council of Ministers and the IMF Executive Board.

This paper extends voting power analysis to weighted committees. These are tuples
(N,A, r|w) that specify a set N = {1, . . . ,n} of players, a set A = {a1, . . . , am} of collective
decision alternatives, and the combination r|w of an anonymous voting method r
(e.g., plurality rule, Borda rule, and so on) with a vector w of integers that represent
group sizes, voting shares, etc. High influence or voting power of player i in a
committee is deduced from high sensitivity of the outcome to i’s preferences.

More precisely, influence of a player i ∈ N is measured either as the probability
for a random change in i’s preferences causing a change of the collective choice, or
by how i’s probability relates to the one that would correspond to being a dictator.
We focus on the case in which all profiles of strict preference orderings are assumed
to be equally likely a priori. This generalizes the Penrose-Banzhaf index for binary
voting games to social choice from m ≥ 3 alternatives. An alternative probability
assumption generalizes the Shapley-Shubik index. The respective influence indica-
tions can identify winners and losers of institutional reform. They help stakeholders,
lobbyists and others to assess the distribution of power and possibly to change the
adopted aggregation rule to their advantage.

2 Related Work

The power distribution in binary weighted voting games has been of interest at least
since von Neumann and Morgenstern (1953, Ch. 10) formalized these as a subclass
of so-called simple (voting) games. See Felsenthal and Machover (1998), Laruelle and
Valenciano (2008) or Napel (2019) for overviews. The common binary framework can
be restrictive, however. Even for collective ‘yes’-or-‘no’ decisions, individual voters
usually have more than two options. They can abstain or not attend a vote, which
may affect the outcome differently than casting a vote either way. Corresponding
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situations have been formalized as ternary voting games (Felsenthal and Machover
1997; Tchantcho et al. 2008; Parker 2012) and quaternary voting games (Laruelle and
Valenciano 2012). Players may also express graded intensities of support: in ( j, k)
simple games, studied by Hsiao and Raghavan (1993) and Freixas and Zwicker (2003,
2009), each player selects one of j ordered levels of approval. The resulting partitions
of players are mapped to one of k ordered output levels; respective power indices
have been defined by Freixas (2005a, 2005b).

Linear orderings of actions and feasible outcomes, as required by ( j, k) simple
games, are given naturally in many applications but fail to exist in others – espe-
cially when candidates for office, policy programs, locations of a facility, etc. have
multidimensional attributes. Pertinent extensions of simple games, along with cor-
responding power measures, have been introduced as multicandidate voting games by
Bolger (1986) and taken up as simple r-games by Amer, Carreras, and Magãna (1998)
and as weighted plurality games by Chua, Ueng, and Huang (2002). They require
players to each cast their votes for one of r candidates.

We here draw on the yet more general framework of weighted committee games
(Kurz, Mayer, and Napel 2020): winners can depend on the entire profile of prefer-
ence rankings of voters rather than just top elements. We then conceive of player i’s
influence or voting power as the sensitivity of joint decisions to i’s preferences. The
resulting ability to affect collective outcomes is closely linked to the opportunity to
manipulate social choices in the sense of Gibbard (1973) and Satterthwaite (1975).
Our investigation therefore relates to computational studies by Nitzan (1985), Kelly
(1993), Aleskerov and Kurbanov (1999), or Smith (1999) that have quantified the
aggregate manipulability of a given decision rule. The conceptual difference between
manipulability indices and the power indices defined below is that we evaluate con-
sequences of arbitrary preference perturbations, while the indicated studies consider
preference misrepresentation that is beneficial from the perspective of a player’s orig-
inal preferences.2 Voting power could be used to a player’s strategic advantage but
it need not. A preference change might result from log-rolling or external lobbying
(where costs of persuasion can relate more to preference intensity than a player’s
original ranking), or could be a demonstration of power for its own sake.

2Nitzan (1985) also checked if outcomes could be affected by arbitrary variations of preferences
and tracked this at the aggregate level. We break the latter down to individual players and link
outcome sensitivity to voting weights.
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Rule Winning alternative at preference profile P

Borda rB(P) ∈ arg maxa∈A

∑
i∈N bi(a,P)

Copeland rC(P) ∈ arg maxa∈A

∣∣∣{a′ ∈ A | a �P
M a′}

∣∣∣
Plurality rP(P) ∈ arg maxa∈A

∣∣∣{i ∈ N | ∀a′ , a ∈ A : aPia′}
∣∣∣

Plurality runoff rPR(P)


= rP(P) if

∣∣∣{i ∈ N | ∀a′ ∈ A r {rP(P)} : rP(P)Pia′}
∣∣∣ > n

2 , else

∈ arg max
a∈{a(1),a(2)}

∣∣∣{i ∈ N | ∀a′ , a ∈ {a(1), a(2)} : aPia′}
∣∣∣

Instant runoff rIR(P)


= rP(P) if

∣∣∣{i ∈ N | ∀a′ ∈ A r {rP(P)} : rP(P)Pia′}
∣∣∣ > n

2 , else

= rIR(P̃) deleting arg min
a∈A

∣∣∣{i ∈ N | ∀a′ , a ∈ A : aPia′}
∣∣∣ from P,A

Table 1: Investigated voting rules

3 Preliminaries

3.1 Voting Rules

We will consider a set N = {1, . . . ,n} of voters or players such that each voter i ∈ N
has strict preferences Pi over a finite set A = {a1, . . . , am} of m ≥ 2 alternatives. We
write abc in abbreviation of aPibPic when the player’s identity is clear. The set of
all m! strict preference orderings on A is denoted by P(A). A (resolute) voting rule
r : P(A)n

→ A maps each preference profile P = (P1, . . . ,Pn) to a winning alternative
a∗ = r(P). Rule r is anonymous if for any P ∈ P(A)n and any permutation σ : N → N
we have r(P) = r(σ(P)) where σ(P) := (Pσ(1), . . . ,Pσ(n)).

We restrict attention to truthful voting3 under one of the five anonymous rules
summarized in Table 1, assuming lexicographic tie breaking. Our selection comprises
two scoring rules (Borda, plurality), one Condorcet-consistent pairwise majority
method (Copeland), and two multi-stage procedures that are in use for filling political
offices in many European jurisdictions (plurality runoff and instant runoff). See
Myerson (1999) or Laslier (2012) on properties and pros and cons of these and other
voting procedures.

3In principle, the same kind of power analysis could be carried out also for strategic voters. This
would require knowledge of the mapping from profiles of players’ preferences to the element of A (or
a probability distribution over A) which is induced by the selected voting equilibrium. Determination
of the latter is in general highly non-trivial (see, e.g., Bouton 2013).
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Under plurality rule rP each voter simply names his or her top-ranked alternative
and the alternative that is ranked first by the most voters is chosen. This is also
the winner under plurality (with) runoff rule rPR if the obtained plurality constitutes
a majority (i.e., more than 50% of votes); otherwise a binary runoff vote between
the alternatives a(1) and a(2) that obtained the highest and second-highest plurality
scores in the first stage is conducted. Instant runoff rIR is similar except that in case
no alternative gets a majority, the alternative a(m) (respectively a(m−1), a(m−2) etc.) that
obtained the lowest plurality score gets sequentially eliminated until one alternative
achieves a majority. rPR and rIR are equivalent if m = 3 or n = 3 under sincere voting.

Borda rule rB has each player i assign m − 1, m − 2, . . . , 0 points to the alternative
that he or she ranks first, second, etc. These points bi(a,P) :=

∣∣∣{a′ ∈ A | aPia′}
∣∣∣ equal

the number of alternatives that i ranks below a. The alternative with the highest total
number of points, known as Borda score, is selected.

Copeland rule rC considers pairwise majority votes between all alternatives. They
define the majority relation a �P

M a′ :⇔
∣∣∣{i ∈ N | aPia′}

∣∣∣ > ∣∣∣{i ∈ N | a′Pia}
∣∣∣ and the

alternative that beats the most others according to �P
M is selected. Copeland rule

is Condorcet consistent: if some alternative a is a Condorcet winner, i.e., beats all
others, then rC(P) = a.

3.2 Weighted Committees

Anonymous voting rules, such as those described above, treat components Pi and P j

of a preference profile P symmetrically. Still, individual preferences often feed into
a collective decision asymmetrically when a committee votes. For instance, stock-
holders have as many votes as they own shares, or political leaders cast bloc votes
in proportion to party seats. The resulting mapping from preferences to outcomes is
a combination of anonymous voting rule r with weights w1, . . . ,wn ∈ N0 for players
1, . . . ,n denoted by

r|w(P) := r([P1]w1 , [P2]w2 , . . . , [Pn]wn) = r(P1, . . . ,P1︸     ︷︷     ︸
w1 times

,P2, . . . ,P2︸     ︷︷     ︸
w2 times

, . . . ,Pn, . . . ,Pn︸     ︷︷     ︸
wn times

) (1)

for all P ∈ P(A)n. The combination (N,A, r|w) of a set of voters, a set of alternatives
and a particular weighted voting rule defines a weighted committee (game). When the
underlying rule is plurality rule rP, then (N,A, rP

|w) is called a (weighted) plurality com-
mittee. Similarly, (N,A, rPR

|w), (N,A, rIR
|w), (N,A, rB

|w) and (N,A, rC
|w) are referred
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P1 P2 P3 P4

c d e a
b a b e
a b a d
e e d b
d c c c

⇒

rB
|w(P) = a (a has max. Borda score 36)

rC
|w(P) = b (b has max. pairwise wins 4)

rP
|w(P) = c (c has max. plurality tally 5)

rPR
|w(P) = d (d beats c in runoff vote by 9 : 5)

rIR
|w(P) = e (deletion of b↘ a↘ d; e beats c by 9 : 5)

Table 2: Choices for preference profile P when w = (5, 4, 3, 2)

to as plurality runoff, instant runoff, Borda and Copeland committees.4 These committees
can all yield mutually distinct decisions for fixed w if m > 2. This is illustrated in
Table 2 for N = {1, 2, 3, 4}, A = {a, b, c, d, e}, and w = (5, 4, 3, 2).

Weighted committees (N,A, r|w) and (N,A, r′|w′) are equivalent if the respective
mappings from preference profiles to outcomes a∗ coincide: r|w(P) = r′|w′(P) for all
P ∈ P(A)n. If there is no need to highlight the underlying rule r and weights w, we
will denote the respective mapping from preference profiles to outcomes by ρ ≡ r|w
and refer to committee (game) (N,A, ρ). Ω denotes the set of all committee games.

Binary committees (N,A, ρ) for which A = {0, 1} and ρ is surjective and monotonic
correspond to simple (voting) games, which were introduced by von Neumann and
Morgenstern (1953, Ch. 10). They are commonly described as a pair (N, v), where
characteristic function v : 2N

→ {0, 1} classifies each set S ⊆ N of voters as either
a winning coalition (v(S) = 1), meaning that support of members of S for a = 1
is sufficient to replace default alternative a = 0, or otherwise as a losing coalition
(v(S) = 0). If a specific binary committee (N,A, ρ) is given, let (N, vρ) denote the
respective simple game with vρ(SP) = 1 (0)⇔ ρ(P) = 1 (0) where SP := {i ∈ N : 1Pi0}.

Two equivalent committees evidently come with identical expectations for indi-
vidual players to influence the collective decision (voting power) and to obtain out-
comes that match their own preferences (success). We will here focus on power and
non-equivalent committees that either involve the same rule r but different weights
w and w′, or the same weights w but different rules r and r′. We seek to quantify:
to what extent does a change of voting weights, implied for example by a reform
of quotas in the International Monetary Fund or a member of parliament switching
party, shift the respective balance of power? How does players’ attractiveness to a
lobbyist change when a committee replaces one voting method by another?

4See Kurz et al. (2020) on some of their structural properties.
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4 Measuring Influence in Weighted Committees

4.1 Classical Power Indices and Probability Assumptions

Informal attempts to quantify the balance of power in binary committees date back to
the Constitutional Convention in Philadelphia in 1787. See Riker (1986). In the first
rigorous investigation, Penrose (1946) assumed strict preferences over two options
to be equally likely and independent across voters. Then he studied the probability
of a given voter i ∈ N to be pivotal or critical: in the terminology of simple games, i is
either able to turn a winning coalition S ⊆ N with i ∈ S into a losing one by leaving
(v(S) − v(S r i) = 1), or to turn a losing coalition S ⊆ N r i into a winning one by
joining (v(S ∪ i) − v(S) = 1).5 The same idea was independently pursued by Banzhaf
(1965) and

PBIi(N, v) =
∑
S⊆N,
i<S

1
2n−1 [v(S ∪ i) − v(S)] =

∑
S⊆N,
i∈S

1
2n−1 [v(S) − v(S r i)], i ∈ N (2)

is today known as the Penrose-Banzhaf index (PBI) of simple game (N, v) with n = |N|.
Investigations of voting power in the EU Council, the US Electoral College, etc.

(see, e.g., Holler and Nurmi 2013) typically use the PBI and its normalized version

nPBIi(N, v) =
PBIi(N, v)∑

j∈N PBI j(N, v)
, (3)

or the Shapley-Shubik index (SSI)

SSIi(N, v) =
∑
S⊆N,
i<S

s! · (n − s − 1)!
n!

[v(S∪i)−v(S)] =
∑
S⊆N,
i∈S

(s − 1)! · (n − s)!
n!

[v(S)−v(Sri)] (4)

with s = |S|. The latter was introduced by Shapley and Shubik (1954) and specializes
the Shapley value, which was defined for general cooperative games (N, v) with
v : 2N

→ R by Shapley (1953), to simple games. See Felsenthal and Machover (1998),
Laruelle and Valenciano (2008) or Napel (2019).

Formally, a power indexψ is a mapping that assigns a vector inRn to every element
of a given class of voting games, where ψi is indicating player i’s voting power or
influence in the respective game for a particular conception of influence. For one such

5For simplicity we will write S r i and S ∪ i instead of S r {i} and S ∪ {i}, respectively.
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conception, influence is ascribed to a player in proportion to the sensitivity of collective
decisions to that player’s preferences or behavior (see Napel and Widgrén 2004). In
binary committees, this sensitivity reduces to events in which v(S ∪ i) − v(S) = 1 or
v(S) − v(S r i) = 1. Power indices such as PBI and SSI then differ in the probability
assumptions about players’ preferences (or coalitions of players supporting a = 1)
when evaluating these critical events.

In particular, the PBI in eq. (2) can also be written as summing v(S ∪ i) − v(S) and
v(S) − v(S r i) over all S ⊆ N weighted by 1/2n,

PBIi(N, v) =
∑
S⊆N

1
2n [v(S ∪ i) − v(S r i)], (5)

and hence equals the probability that player i’s vote matters for the collective decision
assuming an impartial culture (IC). This assumption a priori takes preferences P j to be
independent random variables for all players j ∈ N and each P j ∈ P(A) to have equal
probability. Analogously, the SSI in eq. (4) can be written as

SSIi(N, v) =
∑
S⊆N

s! · (n − s)!
(n + 1)!

[v(S ∪ i) − v(S r i)] (6)

(cf. Proposition 4 below) and equals the probability that the collective decision is
sensitive to player i’s vote under the impartial anonymous culture (IAC) assumption.
IAC is symmetric or ‘impartial’ regarding all π ∈ P(A) just like IC. But it does not
take all profiles P ∈ P(A)n to have the same probability. Rather, allowing general
m ≥ 2, IAC assumes all anonymous preference counts n = (n1, . . . ,nm!) ∈ Nm!

0 with
n1 + . . . + nm! = n, where nk denotes the number of voters whose preferences equal
the k-th element of P(A), to be equiprobable. In the binary case, IAC takes all
numbers s = 0, . . . ,n of players with 1Pi0 to have probability 1

n+1 and, for given s,
all corresponding subsets S ⊆ N to have probability

(n
s

)−1. This is incompatible with
statistical independence and reflects a particular degree of correlation between voter
preferences (see Section 8).

It almost goes without saying that the distribution of preferences in any real-
world committee likely differs from IC, IAC or any of the more general cultures that
we will consider below.6 Influence indications by PBI, SSI, and their generalizations
are a priori assessments from behind a veil of ignorance. These – like simplifying
thought experiments that involve ‘veils of ignorance’ in general – can help to assess

6See, e.g., Regenwetter, Grofman, Marley, and Tsetlin (2012, Ch. 1).
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the playing field created by voting weights. They are also useful for comparative
statics. But they must not be mistaken for actual (a posteriori) influence relations in
an institution. The latter are presumably based not just on more complex preference
structures but also on political and social dimensions of power that are unrelated to
the applicable voting mechanism, which is our focus.

4.2 Influence as Expected Sensitivity of Committee Decisions

We apply the idea of measuring (a priori) influence as sensitivity of the collective
decision to individual players in committees that decide on m ≥ 2 alternatives A =

{a1, . . . , am}. Presume that respective preference profiles are drawn according to some
fixed probability measure on P(A)n, reflecting IC, IAC or other culture assumptions.
Let Pr(P) ∈ [0, 1] denote the pertinent probability of profile P being realized. In
order to assess the voting power of player i in the committee, we perturb i’s realized
preferences Pi to P′i , Pi ∈ P(A) at random and check if the individual preference
change would affect the outcome. Specifically, writing P = (Pi,P−i) with P−i =

(P1, . . . ,Pi−1,Pi+1, . . . ,Pn), we are interested in the behavior of function

∆ρ(P; P′i) :=

1 if ρ(P) , ρ(P′i ,P−i),

0 if ρ(P) = ρ(P′i ,P−i).
(7)

We stay agnostic about the precise source of perturbations: a switch from Pi to P′i
might reflect a spontaneous change of mind or intentional preference misrepresenta-
tion, e.g., because someone has bought i’s vote. Variations might also be the result of
log-rolling, mistakes, or of receiving individual last-minute information about some
of the candidates. Our important premise is only that: a committee member’s input
to the collective decision process matters more, the more influential player i is in the
committee and vice versa.

One can then quantify player i’s a priori influence – and compare it to that of other
players or for variations of voting rule ρ such as moving from r|w to some r|w′ – by
taking expectations of ∆ρ(P; P′i) over all (m!)n conceivable preference profiles P and
all m! − 1 possible perturbations of Pi at any given P:

Îi(N,A, ρ) := E
[
∆ρ(P; P′i)

]
=

∑
P∈P(A)n

Pr(P)
m! − 1

∑
P′i,Pi∈P(A)

∆ρ(P; P′i), i ∈ N. (8)
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A value of Îi(N,A, ρ) = 0.25, for example, signifies that 25% of i’s preference varia-
tions would change the outcome. We will verify below that Î coincides with PBI and
SSI for m = 2 when Pr(P) reflects the IC and IAC assumption, respectively.

Player i’s power Îi(N,A, ρ) equals the probability that a change of i’s preferences
from Pi to a random P′i , Pi would affect the outcome when profiles P arise in a
particular preference culture. If players’ random preferences are exchangeable in
that culture, Î satisfies a natural symmetry condition: if i, j ∈ N are symmetric players
in Γ = (N,A, ρ), i.e., ρ(P) = ρ(σ(P)) for all P ∈ P(A)n for a fixed permutation σ : N→ N
with σ(i) = j and σ( j) = i, then Îi(Γ) = Î j(Γ). Moreover Î satisfies the so-called null
player property of classical power indices: Îi(Γ) = 0 if player i is a null player in Γ,
i.e., its preferences never make a difference to the committee decision because ρ is
constant in Pi.
Îi(N,A, ρ) generally falls short of one for a dictator player, i.e., when ρ(P) = a∗ if

and only if i ranks a∗ top: since only changes of the dictator’s top preference matter,
only (m! − (m − 1)!) out of m! − 1 perturbations of Pi affect the outcome.7 So maximal
Î(·) numbers vary in m and it can be convenient to normalize the index such that
indications always range from zero to one. This amounts to using Iwith

Ii(N,A, ρ) :=
Îi(N,A, ρ)

(m! − (m − 1)!)/(m! − 1)
=

∑
P∈P(A)n

Pr(P)
m! − (m − 1)!

∑
P′i,Pi∈P(A)

∆ρ(P; P′i), i ∈ N,

(9)
as a concise measure of player i’s a priori influence or voting power in (weighted)
committee (N,A, ρ).

Clearly, Îi(N,A, ρ) = Ii(N,A, ρ) if m = 2. For m ≥ 2 the normalization gives
up Îi(N,A, ρ)’s interpretation as a probability in favor of direct comparability across
different committees:8 regardless of how many alternatives or players are involved,
Ii(N,A, ρ) ∈ [0, 1] quantifies how close i is to being a dictator in (N,A, ρ). Ii(N,A, ρ) =

0.5, for instance, states that i’s influence lies halfway between that of a null player
and a dictator: on average, outcomes are half as sensitive to i’s preferences than they
would if i commanded all votes.

7Namely, (m − 1)! − 1 preference perturbations leave the top rank unchanged.
8In contrast to the normalization in (3), which voids a meaningful probability interpretation in

favor of relative power indications, Î and I remain in one-to-one correspondence for given m.
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5 Influence in Committees with an Impartial Culture

5.1 Generalization of PBI to Weighted Committees

Under the impartial culture assumption, which takes players’ preferences P1, . . . ,Pn ∈

P(A) to be independent and equiprobable, definitions (8) and (9) specialize to

P̂BIi(N,A, ρ) :=

∑
P∈P(A)n

∑
P′i,Pi∈P(A) ∆ρ(P; P′i)

(m!)n · (m! − 1)
(10)

and

PBIi(N,A, ρ) :=

∑
P∈P(A)n

∑
P′i,Pi∈P(A) ∆ρ(P; P′i)

(m!)n · (m! − (m − 1)!)
, i ∈ N. (11)

Both indices coincide with the classical Penrose-Banzhaf index PBI if m = 2.

Proposition 1. Let |A| = 2. Then

PBI(N,A, ρ) = P̂BI(N,A, ρ) = PBI(N, vρ).

Proof. The bijective relation between profiles P and coalitions SP = { j ∈ N : 1P j0}
implies for all i ∈ N

PBIi(N, vρ) =
1
2
·

(
1

2n−1

∑
S⊆N,
i<S

[vρ(S ∪ i) − vρ(S)] +
1

2n−1

∑
S⊆N,
i∈S

[vρ(S) − vρ(S r i)]
)

(12)

=
1
2n

( ∑
P∈P(A)n,

0Pi1

[vρ(SP
∪ i) − vρ(SP)] +

∑
P∈P(A)n,

1Pi0

[vρ(SP) − vρ(SP r i)]
)

=
1
2n

∣∣∣∣{P ∈ P(A)n : P′i , Pi ⇔ ∆ρ(P,P′i) = 1
}∣∣∣∣ = P̂BIi(N,A, ρ) = PBIi(N,A, ρ).

PBI(N,A, ρ) and P̂BI(N,A, ρ) are not the only power indices that can be defined
on the space Ω of committee games (N,A, ρ) to coincide with PBI(N, vρ) for m = 2. For
instance, the sum

∑
P′i,Pi

∆ρ(P; P′i) in (10) and (11) could be replaced by an indicator
function θ(P; i) that equals 1 if ∆ρ(P; P′i) = 1 for some P′i , Pi ∈ P(A) and 0 otherwise;
or by a count α(P; i) =

∣∣∣{a ∈ A : ρ(P′i ,P−i) = a for P′i ∈ P(A)
}∣∣∣ − 1 of the number of

alternatives different from ρ(P) that a perturbation of player i’s preferences could
induce. The resulting indications coincide for m = 2 but differ for many committees
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if m ≥ 3. Such differences echo Aumann’s (1987) comment on multiplicity of game-
theoretic solution concepts:

“Different solution concepts are like different indicators of an economy;
different methods for calculating a price index; different maps (road, topo,
political, geologic, etc., not to speak of scale or projection, etc.); . . . They
depict or illuminate the situation from different angles; each one stresses
certain aspects at the expense of others.”

Our definitions (10) and (11) stress the sensitivity aspect of influence. One is scaled
to make numbers directly interpretable as a probability, the other to facilitate com-
parisons for different m.

5.2 Characterization of P̂BI and PBI by a Potential Function

Many solution concepts and power indices have been given ‘characterizations’ by
sets of formal properties or axioms in addition to probabilistic, strategic or epistemic
justifications.9 The respective characterizations of classical power indices mostly
exploit the mathematical lattice structure of simple games. No direct adaptation of
these approaches is possible for classes of games that do not have this structure –
such as general committee games Γ ∈ Ω as well as important subclasses of simple
games (e.g., weighted simple games, where v(S) = 1 ⇔

∑
i∈S wi ≥ q for fixed weights

w ∈ Rn
+ and quota q ∈ R++).

It is possible, however, to generalize to P̂BI and PBI a characterization of
the PBI that uses a different strategy. Namely, Dragan (1996) and Ortmann (1998)
established that the PBI is the unique index ψ that (i) distributes the swings, i.e., sums
to 1/2n times the total number of swings in the given game (where for all S ⊆ N both
v(S∪ i)−v(S) = 1 and v(S)−v(Sr i) = 1 are counted as a ‘swing’ for i), and (ii) admits a
potential (function). The latter means that there exists a mapping Q that assigns a real
number Q(N, v) to every simple game (N, v) such that one can conceive of player i’s
power ψi(N, v) as i’s contribution to game (N, v) (or rather to its potential). Namely,
Q is a potential function for an index ψ if and only if for all (N, v) and i ∈ N

ψi(N, v) = Q(N, v) −Q(N r i, v). (13)

9The characterizations often came with delay, however. The PBI was first axiomatized by Dubey
and Shapley (1979). Simple voting games form no vector space and so the first axiomatization of the
SSI was given by Dubey (1975) two decades after Shapley (1953) and Shapley and Shubik (1954).
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Here (N r i, v) = (N r i, vNri) denotes the subgame or restriction of (N, v) after i is
removed from the set of active players with vNri(S) := v(S) for all S ⊆ N r i. In
particular,

PBIi(N, v) = Q(N, v) −Q(N r i, v) for Q(N, v) :=

∣∣∣{S ⊆ N : v(S) = 1}
∣∣∣

2n−1 . (14)

Viewing a simple game (N, v) as a binary committee (N, {0, 1}, ρ) where coalitions
S collect players j who share preference 1P j0, the ‘subgame’ evaluated in (13) defines
a new mapping ρ′ from preference profiles P−i ∈ P(A)n−1 of players Nr i to outcomes
ρ′(P−i) := ρ(Pi,P−i) with 0Pi1. For m > 2 alternatives and m! > 2 different possibil-
ities for player i’s preference, it is in general necessary to consider more than one
conceivable subgame among players j ∈ N r i. Namely, the respective new mapping
ρ′ : P(A)n−1

→ A could reflect different ways in which i’s preferences might be fixed
in the background and set the stage for the choice by N r i. For any given committee
Γ = (N,A, ρ), we therefore define the restriction ΓNri

π := (N r i,A, ρNri
π ) with respect to

player i ∈ N and preference π ∈ P(A) by

ρNri
π (P′) := ρ(P) where P j = P′j for j ∈ N r i and Pi = π (15)

for all P′ ∈ P(A)n−1.
Now extend the difference consideration in (13) to all such restrictions. Specifi-

cally, say that a power index ψ that maps committees Γ = (N,A, ρ) ∈ Ω to ψ(Γ) ∈ Rn

admits an average potential if there exists a potential function Q : Ω→ R such that

ψi(Γ) = Q(Γ) −
1

m!
·

∑
π∈P(A)

Q(ΓNri
π ) (16)

for all Γ ∈ Ω and i ∈ N. Then one can conceive ofψi(Γ) as reflecting player i’s expected
contribution to the committee Γ relative to all subgames – i.e., certain well-defined
committees (N r i,A, ρ′) – that do not involve i.10 Writing

χi(N,A, ρ) :=
∣∣∣∣{(P,P′i) ∈ P(A)n+1 : ρ(P) , ρ(P′i ,P−i)

}∣∣∣∣ (17)

for the number of swings of player i in Γ = (N,A, ρ), we have:

10If (N,A, ρ) involves a neutral rule ρ, potentials of all subgames ΓNri
π , π ∈ P(A), coincide. Then

(16) reduces to ψi(Γ) = Q(Γ) − Q(ΓNri
π ) for arbitrary fixed π ∈ P(A), analogous to (13).
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Proposition 2. P̂BI admits an average potential. The respective potential function is

Q(Γ) :=
1

(m! − 1) · (m!)n

∑
j∈N

χ j(Γ).

Proof. We have Q(Γ∅π) = 0 and for n ≥ 1∑
π∈P(A)

Q(ΓNri
π ) =

∑
π∈P(A)

1
(m! − 1) · (m!)n−1

∑
j∈Nri

χ j(ΓNri
π ) (18)

=
1

(m! − 1) · (m!)n−1

∑
j∈Nri

∑
π∈P(A)

∑
P∈P(A)n,

Pi=π

∑
P′j,P j∈P(A)

∆ρ(P,P′j)

=
1

(m! − 1) · (m!)n−1

∑
j∈Nri

χ j(Γ).

Hence

Q(Γ) −
1

m!
·

∑
π∈P(A)

Q(ΓNri
π ) =

1
(m! − 1) · (m!)n

∑
j∈N

χ j(Γ) −
1

(m! − 1) · (m!)n

∑
j∈Nri

χ j(Γ) (19)

=
χi(Γ)

(m! − 1) · (m!)n = P̂BIi(Γ).

Denote the total number of all players’ swings divided by the (player-independent)
number (m!)n(m! − 1) of all (P,P′i) ∈ P(A)n+1 s.t. Pi , P′i as

X(Γ) :=
∑

i∈N χi(Γ)
(m!)n(m! − 1)

. (20)

Then, as the direct equivalent of Ortmann’s (1998) corresponding property for simple
games, we say an index ψ distributes the swings in committee games if∑

i∈N

ψi(Γ) = X(Γ). (21)

Proposition 3. P̂BI is the unique index that admits an average potential and distributes
the swings in committee games.

Proof. Let ψ be an arbitrary index that distributes the swings and admits an average
potential. Let the respective potential function be Q̃ with Q̃(∅,A, ρ) ≡ 0 (w.l.o.g.).
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Then (16) and (21) imply

X(Γ) =
∑
i∈N

ψi(Γ) = n · Q̃(Γ) −
1

m!

∑
i∈N

∑
π∈P(A)

Q̃(ΓNri
π ) (22)

or, equivalently,

Q̃(Γ) =
1
n

X(Γ) +
1

m!

∑
i∈N

∑
π∈P(A)

Q̃(ΓNri
π )

 (23)

for all Γ = (N,A, ρ) involving n ≥ 1 players and m ≥ 2 alternatives. Doing induction
on n, all values of Q̃ on Ω can be recursively computed via (23). So Q̃ and hence ψ
are uniquely determined for all Γ ∈ Ω. Now it remains to recall from Proposition 2
that P̂BI admits an average potential and distributes the swings.

Index PBI rescales P̂BI by a constant factor. So PBI can be characterized in
perfect analogy to P̂BI: rescale X(Γ) in (20) to X′(Γ) = (m!−1)X(Γ)

m!−(m−1)! and use X′(Γ) in (21).
The respective potential function is Q′(Γ) = 1

(m!−(m−1)!)·(m!)n

∑
j∈N χ j(Γ).

6 Illustration

6.1 A Toy Example

Let us evaluate the distribution of voting power with PBI when the stylized hiring
committee with three homogeneous groups of 6, 5, and 3 members (see Introduction)
adopts Borda rule rB, that is weighted committee (N,A, rB

|(6, 5, 3)). With |A| = 2
candidates, the applicant ranked first by any two groups wins. So all three players are
symmetric. They have power (1/2, 1/2, 1/2) according to the classical Penrose-Banzhaf
index, and (1/3, 1/3, 1/3) according to the Shapley-Shubik index.

The symmetry is broken when three or more candidates are involved. Given
A = {a, b, c}, PBI(N,A, rB

|(6, 5, 3)) evaluates if a change of i’s preference Pi makes a
difference to the Borda winner for all (3!)3 = 216 strict preference profiles P ∈ P(A)3.
Table 3 illustrates this for profile P = (bca, abc, cba). The Borda winner b at P has a score
of 20 = 6 · 2 + 5 · 1 + 3 · 1 vs. 10 for a vs. 12 for c (first block of table). When preferences
P1 = bca of group 1 are varied (second block), changes to P′1 ∈ {abc, acb, cab, cba} result
in a new Borda winner (indicated by an asterisk) while P′1 = bac does not. Similarly,
three out of five perturbations P′2 of player 2’s preferences would change the outcome
(third block); but no variation of P3 affects the committee choice (last block). The

15



P = P′1 a b c P′2 a b c P′3 a b c
(bca, abc, cba) abc 22* 14 6 - - - - abc 16 20 6

⇓ acb 22* 8 12 acb 10 15 17* acb 16 17 9
a b c bac 16 20 6 bac 5 25 12 bac 13 23 6

10 20 12 - - - - bca 0 25 17 bca 10 23 9
cab 16 8 18* cab 5 15 22* cab 13 17 12
cba 10 14 18* cba 0 20 22* - - - -

Table 3: Effect of perturbation of P = (bca, abc, cba) to (P′i ,P−i) on Borda scores

m = 3 m = 4 m = 5
PBI(rP

|(6, 5, 3)) (0.6667, 0.4444, 0.4444) (0.7500, 0.3750, 0.3750) (0.8000, 0.3200, 0.3200)
PBI(rPR

|(6, 5, 3)) (0.5556, 0.5556, 0.5000) (0.5833, 0.5833, 0.5000) (0.6000, 0.6000, 0.5000)
PBI(rIR

|(6, 5, 3)) (0.5556, 0.5556, 0.5000) (0.5833, 0.5833, 0.5000) (0.6000, 0.6000, 0.5000)
PBI(rB

|(6, 5, 3)) (0.6806, 0.5972, 0.3611) (0.7372, 0.6246, 0.3644) (0.7631, 0.6462, 0.3839)
PBI(rC

|(6, 5, 3)) (0.5509, 0.5509, 0.5509) (0.5851, 0.5851, 0.5851) (0.6098, 0.6098, 0.6098)

Table 4: Voting power in committee (N,A, r|(6, 5, 3)) for |A| = m and r ∈ {rP, rPR, rIR, rB, rC
}

considered profile P = (bca, abc, cba) therefore contributes (4/864, 3/864, 0) to PBI(·).
Aggregating the corresponding numbers for all P ∈ P(A)n yields

PBI(N,A, rB
|(6, 5, 3)) = (588/864, 516/864, 312/864) ≈ (0.6806, 0.5972, 0.3611). (24)

So for the weights at hand, group 1 has almost 70% of the opportunities to swing
the collective choice that it would have when deciding alone. This figure is roughly
halved for group 3. A traditional power index like the PBI fails to pick up that sym-
metry of the groups pertains only to binary votes and could yield quite misleading
results when an institution decides on more alternatives. One can also see from the
numbers in (24) that PBI(N,A, ρ) need not add to one: the collective outcome at a
given P may be sensitive to the preferences of several players at the same time, or to
those of none.11

Of course, manual computations as in Table 3 are tedious. It is not difficult,
though, to evaluate PBI with a standard desktop computer for up to five alter-
natives; and to compare the respective distribution of voting power to that arising
from other voting rules. Table 4 summarizes findings for r ∈ {rB, rC, rIR, rP, rPR

}. As

11This motivates use of nPBI (see eq. (3)) instead of PBI in many applications to binary committees.
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the comparison between m = 2 and 3 showed already, voting power varies in the
number of alternatives. Under plurality rule, for instance, player 1 is closer to having
dictatorial influence, the more alternatives split the vote of players 2 and 3.12

6.2 Election of the IMF’s Managing Director

The International Monetary Fund (IMF) constitutes a prominent real-world example
of weighted voting. Power indices have been applied to it many times. See, e.g.,
Leech (2003), Alonso-Meijide and Bowles (2005), Aleskerov, Kalyagin, and Pogorel-
skiy (2008), or Leech and Leech (2013). We extend previous analysis to three alterna-
tives and the election of the IMF’s Managing Director by the Executive Board.

The Executive Board consists of 24 members whose voting weights reflect financial
contributions to the IMF, so-called quotas. The six largest contributors – USA, China,
Japan, Germany, France and the UK – and Saudi Arabia currently provide one
Executive Director each. The remaining 182 member countries are grouped into
seventeen constituencies. Each supplies one Executive Director who represents all
group members and wields their combined voting rights.

Various changes to the distribution of quotas have taken place since the IMF’s
foundation in 1944. The most recent reform was agreed in 2010 and started to be
implemented in 2016. A significant share of votes has shifted from the USA and
Western Europe to emerging and developing countries. In particular, China’s vote
share has gone up to 6.1% (compared to 3.8% before). India’s share increased to 2.6%
(2.3%), Russia’s to 2.6% (2.4%), Brazil’s to 2.2% (1.7%) and Mexico’s to 1.8% (1.5%).
On the same occasion, the IMF modified the selection of its key representative, the
Managing Director (currently: Kristalina Georgieva).

Prior to the reform, the election process was criticized as intransparent and un-
democratic: the Managing Director used to be a European chosen in backroom
negotiations with the US. The new process is advertised as “open, merit based, and
transparent” (IMF Press Release 16/19): all Executive Directors and IMF Governors
may nominate candidates. If the number of nominees is too big, a shortlist of three
candidates is drawn up based on indications of support. From this shortlist the

12Corresponding P̂BI(·) numbers can be obtained by multiplication with m!−(m−1)!
m!−1 , i.e., 4/5, 18/23 or

96/119 for m = 3, 4 or 5, respectively. PBI(N, {a1, . . . , am}, rP
|(6, 5, 3)) converges to (1, 0, 0) as m → ∞.

Comparative statics are more involved for the other rules: bigger m tends to raise the share of profiles
P at which some perturbation of Pi affects the outcome but lowers the fraction of perturbations P′i that
do so both for i and a hypothetical dictator. The sum of these effects here increases PBIi for all i ∈ N
and r ∈ {rB, rC, rIR, rPR

} but not in general.
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new Managing Director is elected “by a majority of the votes cast” in the Executive
Board.13

The IMF has neither publicly nor upon our request specified how a “majority
of the votes cast” is to be achieved for three candidates. This creates procedural
leeway. Its voting power effects can be quantified with the proposed index. We
evaluate the influence implications of the procedural choice between (i) plurality
rule (acknowledging that a ‘plurality’ is sometimes also called a ‘relative majority’),
(ii) plurality with a runoff if none of the three shortlisted candidates initially secures
50% of the votes, or (iii) pairwise votes à la Copeland. Our analysis falls under the
caveats expressed at the end of Section 4.1. In particular,PBImaintains the statistical
independence assumption of most earlier analysis of the IMF. It is intended to provide
an a priori assessment of the playing field created by weights and how this depends
on voting procedures, not an estimate of who wields how much influence on the next
candidate choice given current alliances, economic ties, etc.

Influence figures in Table 5 are based on Monte Carlo simulation with sufficiently
many iterations so that differences within rows are significant at ≥95% confidence.14

2016’s increase of vote shares for emerging market economies has noticeably raised
their voting power, no matter which aggregation rule we consider. This is most
pronounced for China, with an increase of more than 50%. Influence of the groups
led by Brazil and Russia (incl. Syria) increased by about 18% and 12%, respectively;
that of the Turkish and Indonesian group by about 11% each; the Indian and Spanish
(incl. Mexico and others) groups gained about 10% and 9%. Intended or not, the
South African group lost about 8% of its a priori voting power; Saudi Arabia is the
greatest loser with roughly 27%. Germany, France and UK each lost between 5% and
7% while voting power of the USA almost stayed constant.

The computations exhibit a simple pattern regarding possible interpretations of
‘majority’: voting power of the USA is higher for plurality rule than for Copeland
than for plurality with runoff; exactly the opposite applies to all other (groups of)
countries. Given how controversially reforms of IMF quotas have been debated in
the past, it is noteworthy that the influence differences between methods turn out
to be bigger than differences between pre and post-reform weights for 20 out of 24

13IMF Press Release 16/19, Part 4, holds that “Although the Executive Board may select a Managing
Director by a majority of the votes cast, the objective of the Executive Board is to select the Managing
Director by consensus . . . ”. The same is said in Part 3 about adoption of the “shortlist”. Our analysis
presumes that a consensus may not exist right away but typically arises in the shadow of straw votes.

14Only PBIJapan(rP
|wpre) , PBIJapan(rP

|wpost) is not significant. The huge number 624 > 4.7 · 1018

of profiles P for 24 players renders exact calculation of PBI(·) impractical.
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Vote share (%) PBI(rP
|w) PBI(rPR

|w) PBI(rC
|w)

wpre wpost wpre wpost wpre wpost wpre wpost

USA 16.72 16.47 0.7126 0.7030 0.6740 0.6653 0.6880 0.6790
Japan 6.22 6.13 0.1986 0.1989 0.2239 0.2233 0.2164 0.2159
China 3.80 6.07 0.1216 0.1967 0.1404 0.2209 0.1340 0.2135
Netherlands 6.56 5.41 0.2092 0.1755 0.2350 0.1983 0.2277 0.1910
Germany 5.80 5.31 0.1851 0.1720 0.2097 0.1950 0.2024 0.1876
Spain 4.90 5.29 0.1567 0.1718 0.1789 0.1945 0.1717 0.1871
Indonesia 3.93 4.33 0.1254 0.1403 0.1448 0.1607 0.1382 0.1538
Italy 4.22 4.12 0.1349 0.1337 0.1551 0.1533 0.1482 0.1465
France 4.28 4.02 0.1370 0.1306 0.1574 0.1499 0.1507 0.1432
United Kingdom 4.28 4.02 0.1369 0.1304 0.1574 0.1498 0.1506 0.1431
Korea 3.48 3.78 0.1114 0.1226 0.1291 0.1410 0.1230 0.1345
Canada 3.59 3.37 0.1150 0.1093 0.1332 0.1265 0.1268 0.1203
Sweden 3.39 3.28 0.1085 0.1063 0.1259 0.1231 0.1198 0.1171
Turkey 2.91 3.22 0.0932 0.1044 0.1088 0.1209 0.1032 0.1149
South Africa 3.41 3.09 0.1091 0.1001 0.1267 0.1162 0.1205 0.1104
Brazil 2.61 3.06 0.0835 0.0993 0.0979 0.1154 0.0927 0.1096
India 2.80 3.04 0.0898 0.0988 0.1048 0.1147 0.0993 0.1089
Switzerland 2.94 2.88 0.0941 0.0935 0.1097 0.1087 0.1041 0.1030
Russian Federation 2.55 2.83 0.0817 0.0920 0.0957 0.1070 0.0905 0.1015
Iran 2.73 2.54 0.0874 0.0823 0.1024 0.0962 0.0970 0.0910
Utd. Arab Emirates 2.57 2.52 0.0822 0.0817 0.0963 0.0955 0.0911 0.0904
Saudi Arabia 2.80 2.01 0.0896 0.0652 0.1046 0.0767 0.0992 0.0723
Dem. Rep. Congo 1.46 1.62 0.0465 0.0526 0.0555 0.0621 0.0521 0.0584
Argentina 1.84 1.59 0.0587 0.0515 0.0695 0.0610 0.0654 0.0573

Table 5: Influence in IMF Executive Board for pre- and post-reform weights and m = 3
(groups as of Dec. 2018 indicated by largest member)
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Board members. The exceptions are China, Saudi Arabia, and the groups led by
Brazil and the Netherlands.

7 General Rule Comparisons

One may wonder if the largest player in a committee – like the USA in the IMF –
generally benefits from plurality voting, or if small players typically have greater
influence with some form of pairwise choice such as a runoff? And can robust rec-
ommendations for maximizing a player’s influence be given even if the distribution
of voting weights fluctuates over time (like IMF quotas or population-based weights
in the EU)? We take a first step beyond single examples and look for possible size bi-
ases of our five social choice rules in general. Attention is restricted to small numbers
of players and alternatives for a start; namely n = 3 and m = 3 or 4.

We use the standard projection of the 3-dimensional simplex of relative voting
weights to the plane in order to report on rule comparisons for all possible weight dis-
tributions among three players: vertices give 100% of voting weight to the indicated
player, the midpoint corresponds to (1/3, 1/3, 1/3), etc. Figure 1 and Figures A-1–A-4 in
the Appendix present the results of numerically comparing – based on six significant
digits – influence of player 1 under some rule ρ vs. rule ρ′. Areas colored green (red)
indicate voting weight distributions for which PBI1(N,A, ρ) > (<) PBI1(N,A, ρ′);
yellow reflects equality.

7.1 Borda vs. Plurality

The major cases that arise when player 1’s influence in Borda vs. plurality committees
are compared are numbered in Figure 1.15 We focus on generic w1 , w2 , w3 and write
w̃i = wi/(w1 + w2 + w3), w+

−1 = max{w̃2, w̃3}, and w−
−1 = min{w̃2, w̃3}. The following

recommendations could then be given to an influence-maximizing player 1 if the
procedural choice between rB and rP is at this player’s discretion:

• If you wield the majority of votes (regions 1a,b) impose plurality rule.

Namely, w̃1 > 2
3 makes you a plurality and Borda dictator (region 1a); 2

3 ≥ w̃1 > 1
2

implies dictatorship only under plurality rule (region 1b).

• Also impose plurality rule (region 5)
15Similar distinctions apply to Borda vs. other rules; see Figures A-1 and A-2 (Appendix, p. 33).

Darker shades of green or red indicate greater influence differences.
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Borda vs.	Plurality m=3

1 2

3

1a

1b

3

4

4

5

2

2

Figure 1: Borda vs. plurality for m = 3. Regions colored green (yellow/red) indicate player 1’s
Borda influence is greater than (equal to/smaller than) plurality influence

– if your weight is smallest and others have a third to half of the votes each
( 1

3 ≤ w−
−1 <

1
2 ), or

– if you have less than a third of votes and the largest player falls short of
the majority by no more than a quarter of the remaining player’s votes
( 1

2 > w+
−1 ≥

1
2 −

1
4w−
−1).

• Otherwise (regions 2–4), as a good ‘rule of thumb’, impose Borda rule instead
of plurality. Note that this includes most cases in region 3 where player 1 has
a plurality of votes. The only exceptions are two small subregions where all
weights are similar but w̃1 > w̃+

−1 >
1
3 > w̃−

−1.

7.2 Further Pairwise Comparisons

Analogous pairwise influence comparisons are depicted in the Appendix for all
weight distributions w and r ∈ {rB, rC, rIR, rP, rPR

}. Borda’s high responsiveness to
weight differences requires detailed case distinctions also in comparison to Copeland
and plurality (instant) runoff (Figures A-1 and A-2). When plurality rule is compared
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(a) m = 3 (b) m = 4

rB, rC, rP, rPR

rC, rP, rPR

rB, rP

rB, rC

rP

rPR

rB

rC

player 1 influence 3,3

1 2

3

rP, rPR, rB, rC

rP, rPR, rC

rB, rC

rP

rB

rC

1 2

3

player 1 influence 3,4Figure 2: Maximizers of player 1’s influence

to either Copeland or plurality (instant) runoff (Figure A-3, p. 34), the recommenda-
tion is very intuitive: plurality rule maximizes influence if you have the most votes.
Otherwise your influence is greater (at least weakly) under the respective other rule.
For Copeland vs. plurality runoff (Figure A-4), the former gives greater influence to
you if you have at least the second-most votes.

7.3 Influence Maximization

One can also check directly which of the considered voting rules maximizes a specific
player i’s a priori voting power PBIi(N,A, r|w). Results for any given weight distri-
bution are summarized in Figure 2(a) for m = 3 and in Figure 2(b) for m = 4.16 Con-
figurations of same color indicate the same set of influence-maximizing voting rules
for player 1. Tongue-in-cheek, Figure 2 provides a map for influence-maximizing
chairpersons – or whoever has a say on the adopted voting rule and cares about a
specific player’s influence. The map might also make subjective impressions that
adoption of a specific rule creates bias against players 2 or 3 more objective.

7.4 Transparency

While individual players may seek maximal influence, a constitutional designer
more likely cares about aspects such as the transparency of a voting arrangement:

16Recall rPR
≡ rIR for n = 3. Some focal lines or points in the figures have been manually enlarged.
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rPR

rPR

rB

rC
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3

Figure 3: Most transparent voting rules

the induced distribution of power should differ as little as possible from the weight
distribution. Weights in supranational decision bodies tend to be agreed on behalf
of citizens who are unaware that voting weights and voting power differ. This
issue has played a key role in the ‘Jagiellonian Compromise’ for voting rules of the
Council of the EU (e.g., Słomczyński and Życzkowski 2017). A transparent rule
avoids paradoxical situations such as Luxembourg casting votes in the Council of
Ministers that never mattered for qualified majority decisions in 1958–1972.

One can quantify the misalignment of a given voting weight arrangement and
the implied distribution of voting power as ‖ · ‖1-distance

d(w,PBI(N,A, r|w)) =
∑
i∈N

∣∣∣∣∣wi −
PBIi(·)∑

j∈N PBI j(·)

∣∣∣∣∣ (25)

between relative voting weights wi := wi/
∑

j∈N w j and power. For instance, relative
weights w = (6, 5, 3)/14 have a distance of 2.66% to the induced distribution of
relative power (588, 516, 312)/1416 if Borda rule is used for m = 3 (see Section 6.1).
The analogous distance is considerably bigger under plurality, plurality runoff, or
for pairwise comparisons: 14.29%, 19.21% and 23.81%, respectively.

Figure 3 shows which of the considered voting rules r numerically minimizes
d(w,PBI(N,A, r|w)) for all weight configurations among three players who decide
on m = 3 or 4 alternatives.17 It turns out that Borda rule comes closest to aligning the

17Visibility of some areas requires zooming in. In Figure 3(b), for instance, rC and rPR are both most
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distributions of relative weight and power for most configurations. In this sense rB

is the most transparent of the voting rules investigated here.18

8 Committees involving other Culture Assumptions

The impartial culture assumption underlying above computations treats preferences
over given alternatives A = {a1, . . . , am} as equally probable and independent across
players. One may appeal to the ‘principle of insufficient reason’ for equiprobability,
but independence is harder to justify. Committee votes are often preceded by delib-
eration and discussion. This plausibly induces similarity and dependence between
preferences, e.g., over candidates for a position, even when one adopts an a priori
perspective that purposely ignores committee members’ preference history.

Unfortunately, while there is just one way for preferences to be independent, there
are uncountable ways how they may depend on one another – with little guidance
which one to presume. As a robustness check and illustration of how preference
correlation may affect a player’s influence we will consider a family of distributions
over P(A)n that nests the IC and IAC assumptions: the multivariate version of the
urn scheme proposed by Eggenberger and Pólya (1923). It was first used in social
choice analysis by Berg (1985).

Berg suggested to conceive of preferences P1, . . . ,Pn ∈ P(A) as formed or revealed
in a sequential way akin to iteratively drawing n balls from an urn with balls of m!
different colors. Impartiality is reflected by the urn containing each of the m! possible
rankings, represented by a ball of specific color, exactly once when the first ranking
Pi is drawn for a random player i. The IC model then entails the replacement of
the drawn ball by one ball of identical color. This restores the probability for each
π ∈ P(A) to 1/m! before a second player’s preference ranking is drawn, the respective
ball is replaced, and so forth.

Preference dependence can be accommodated by varying the replacement: for
fixed α > 0, replace any ball drawn by 1 + α balls of identical color. The α extra
balls that represent the first player’s preferences raise the probability of the second

transparent for weights on a thin gray line around the yellow triangle in the middle.
18An alternative goal could be to minimize ‖·‖1-distance to (1/3, 1/3, 1/3) instead of w in (25). The rules

perform equally if (i) w = (1/3, 1/3, 1/3), (ii) wi = w j = 50% for i , j, or (iii) wi > m−1
m . For 1/2 < wi < m−1

m ,
player i is a dictator under rC, rP, rPR but not rB. Then rB is most ‘equalizing’. rC is so if wi < 1/2 for all i
because players then are symmetric under rC. We also note that random gaps wi −PBIi(·)/‖PBI(·)‖1
that arise for rC, rP, rPR if w is drawn uniformly from the simplex are mean-preserving spreads of
those for rB. In that sense rB also minimizes risk of an individual power misalignment.
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or later preference draws to coincide with it, etc. Parameter α > 0 thus represents
positive preference spillovers or similarity between voters. Analogously −1 ≤ α < 0
corresponds to negative spillovers and dissimilarity.

The special case of α = 1 coincides with the IAC assumption (see Berg 1985): all
n = (n1, . . . ,nm!) ∈ Nm!

0 with n1 + . . . + nm! = n and, for given count n, all preference
profiles P such that (nP

1 , . . . ,n
P
m!) = n are equally probable, where nP

k denotes the
number of players whose preferences coincide with the k-th element of P(A). In
particular, α = 1 implies

Pr(P) =

[(
m! + n − 1

n

)
·

(
n

nP
1 , . . . , nP

m!

)]−1

(26)

for any P ∈ P(A)n. Given (26), definitions (8) and (9) specialize to

ŜSIi(N,A, ρ) :=
∑

P∈P(A)n

nP
1 ! · . . . · nP

m!! · (m! − 2)!
(m! + n − 1)!

·

∑
P′i,Pi∈P(A)

∆ρ(P; P′i), i ∈ N. (27)

with 0! := 1 and, again normalizing a dictator’s influence to 1,

SSIi(N,A, ρ) :=
m! − 1

m! − (m − 1)!
· ŜSIi(N,A, ρ), i ∈ N. (28)

These indices coincide with the classical Shapley-Shubik index when m = 2:

Proposition 4. Let |A| = 2. Then

SSI(N,A, ρ) = ŜSI(N,A, ρ) = SSI(N, vρ).

Proof. Choosing A = {0, 1} and using s to denote the number of orderings 1P j0 in a
given profile P as well as members of the corresponding coalition SP, we have

SSIi(N,A, ρ) =
∑

P∈P(A)n

s! · (n − s)!
(n + 1)!

·

∑
P′i,Pi∈P(A)

∆ρ(P; P′i) (29)

=
∑

P∈P(A)n,
0Pi1

s! · (n − s)!
(n + 1)!

[vρ(SP
∪ i) − vρ(SP)]

+
∑

P∈P(A)n,
1Pi0

s! · (n − s)!
(n + 1)!

[vρ(SP) − vρ(SP r i)]
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m = 3 m = 4 m = 5
SSI(rP

|(6, 5, 3)) (0.5714, 0.3929, 0.3929) (0.7200, 0.3692, 0.3692) (0.7934, 0.3203, 0.3203)
SSI(rPR

|(6, 5, 3)) (0.4821, 0.4821, 0.4286) (0.5631, 0.5631, 0.4800) (0.5959, 0.5959, 0.4959)
SSI(rB

|(6, 5, 3)) (0.6161, 0.5536, 0.3036) (0.7230, 0.6138, 0.3467) (0.7604, 0.6441, 0.3808)
SSI(rC

|(6, 5, 3)) (0.4732, 0.4732, 0.4732) (0.5623, 0.5623, 0.5623) (0.6049, 0.6049, 0.6049)

Table 6: Voting power in committee (N,A, r|(6, 5, 3)) for |A| = m and r ∈ {rP, rPR, rIR, rB, rC
}

under IAC

=
∑

P∈P(A)n,
0Pi1

{
s! · (n − s)!

(n + 1)!
+

(s + 1)! · (n − s − 1)!
(n + 1)!

}
[vρ(SP

∪ i) − vρ(SP)]

=
∑
S⊆N,
i<S

s! · (n − s − 1)!
n!

[vρ(S ∪ i) − vρ(S)] = SSI(N, vρ)

In the toy example investigated in Section 6.1, profile P = (bca, abc, cba) corre-
sponds to n = (1, 0, 0, 1, 0, 1) with P(A) = {abc, acb, bac, bca, cab, cba}. So the pertur-
bations that we identified in Table 2 as swinging the Borda winner contribute only
(4/1344, 3/1344, 0) to SSI(·). This is less than under the IC assumption (α = 0) because
the preference affiliation reflected by α = 1 reduces the probability of profiles where
all players have distinct preferences. Relatively few Borda swings arise for the now
more likely profiles where all players have identical preferences. Overall we obtain
dictator-normalized influences of

SSI(N,A, rB
|(6, 5, 3)) ≈ (0.6161, 0.5536, 03036) (30)

for m = 3 under IAC, compared to PBI(·) ≈ (0.6806, 0.5972, 0.3611) in the IC case.
The intuition that preference similarities under IAC tend to make swing oppor-

tunities less likely is broadly confirmed by comparing influence figures reported in
Table 4 to Table 6. But SSIi(·) > PBIi(·) is possible: the influence of players 2 and 3
for m = 5 and plurality rule rP is slightly larger under IAC than IC. The explanation
is that outcomes are sensitive to player 2 and 3’s preferences under rP if and only if
both have an identical top preference that differs from player 1’s. Similarity between
players, as captured by α > 0, shifts probability towards events where two or all of
them have identical preferences. That players 2 and 3 agree but player 1 does not is
made more likely for a range of values that includes α = 1.
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(a) Borda rule rB (b) Plurality rule rP

Figure 4: Player 1’s influence I1(N,A, r|(6, 5, 3)) for |A| = m and Pólya-Eggenberger model
with preference spillover α ∈ {−1, 0, 1, . . . , 25} (interpolated)

As α gets large, all players perfectly agree for more and more preference draws.
For the considered committees this ultimately lowers individual influence of all
players, at rates that depend on the number m of alternatives. Figure 4 illustrates
this for player 1 and α ∈ {−1, 0, 1, . . . , 25}when r ∈ {rB, rP

} and m ∈ {2, 3, 4, 5}.
Figures on influence in the IMF Executive Board for α = 1 are reported in the

Appendix (Table A-1). As could already be suspected based on IMF applications
of the classical PBI and SSI, individual influence is considerably smaller under IAC
than IC, as positive spillovers make profiles less likely in which a single preference
perturbation can change the outcome. The key conclusions obtained for the IC
assumption are robust, however: influence differences between voting methods are
larger than those between pre- and post-reform weights for most members and
plurality runoff rule gives greatest influence to all members, except the USA. The
main qualitative difference between results for IC and IAC is that voting power of
the USA is highest for Copeland rule under the latter (rather than plurality).

One can also compare the considered voting procedures under IAC with the
objective of maximizing player 1’s influence or transparency (see Figures A-5 and
A-6 in the Appendix). Some regions of relative weights can be identified in which,
e.g., rPR maximizes 1’s influence under IC while rB or rC do under IAC (compare the
green regions in Figures 2 vs. A-5); or in which rP is most transparent under IC while
rB is under IAC (see orange regions in Figures 3(a) vs. A-6(a)). Overall, the respective
findings obtained under the IC assumption are however surprisingly robust to the
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positive preference spillovers reflected by IAC.

9 Concluding Remarks

The take-home message of our investigation is that the choice of a voting rule matters
not just for particular preference constellations: it drives the a priori balance of
power in a committee in a quantifiable way. Voting weights and aggregation method
determine together how much collective outcomes respond – on average – to the
wishes of individual decision makers. Traditional measures of a priori voting power,
such as the Penrose-Banzhaf or Shapley-Shubik indices, fail to capture this and may
report spurious symmetries for m > 2 alternatives. We propose generalizations that
fill this gap.

The indices suggested in this paper are proportional to the probability for a ran-
dom individual preference perturbation to affect the outcome. A null player’s voting
power is automatically zero; a dictator player’s power can easily be normalized to
one. How method and weights jointly distribute power has been illustrated for
generic committees involving three voter groups and the election of the IMF’s Man-
aging Director. Similar analysis could illuminate the distribution of voting power on
corporate boards, party conventions, multi-candidate primaries, and so on.

Evaluating the effects of adopting a voting method already at an ex ante stage
complements case studies that document how choice of a particular method may have
affected specific big political decisions. See, e.g., Leininger (1993) on making Berlin
vs. Bonn the capital of Germany after reunification; Tabarrok and Spector (1999) on
electoral causes of the US civil war; or Maskin and Sen (2016) on US primary elections
and the nomination of Trump.

For decisions on three or four options, we have identified and compared the power
implications of five prominent rules for all conceivable weight distributions among
three players. It turns out that relatively coarse information about the distribution of
weights suffices for ranking the influence of a large, middle, or small player on voting
outcomes across rules, or for determining how well weights and influence are aligned
across players. We leave it to future research to further generalize the probability
assumptions investigated here and to add a variety of other voting methods to the
picture (cf. Nurmi 2006, Ch. 7, or Laslier 2012). The analysis might also be extended to
multi-winner elections (see, e.g., Elkind et al. 2017) or to strategic voting in restricted
preference domains.
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Zeitschrift füer Angewandte Mathematik und Mechanik 3, 279–289.

Elkind, E., P. Faliszewski, P. Skowron, and A. Slinko (2017). Properties of multiwinner
voting rules. Social Choice and Welfare 48(3), 599–632.

Felsenthal, D. S. and M. Machover (1997). Ternary voting games. International Journal
of Game Theory 26(3), 335–351.

Felsenthal, D. S. and M. Machover (1998). The Measurement of Voting Power. Chel-
tenham, UK: Edward Elgar.

Freixas, J. (2005a). Banzhaf measures for games with several levels of approval in
the input and output. Annals of Operations Research 137(1), 45–66.

Freixas, J. (2005b). The Shapley-Shubik index for games with several levels of ap-
proval in the input and output. Decision Support Systems 39(2), 185–195.

Freixas, J. and W. S. Zwicker (2003). Weighted voting, abstention, and multiple levels
of approval. Social Choice and Welfare 21(3), 399–431.

Freixas, J. and W. S. Zwicker (2009). Anonymous yes-no voting with abstention and
multiple levels of approval. Games and Economic Behavior 67(2), 428–444.

Gibbard, A. (1973). Manipulation of voting schemes: a general result. Economet-
rica 41(4), 587–601.

Holler, M. J. and H. Nurmi (Eds.) (2013). Power, Voting, and Voting Power: 30 Years
After. Heidelberg: Springer.

Hsiao, C.-R. and T. E. S. Raghavan (1993). Shapley value for multichoice cooperative
games, I. Games and Economic Behavior 5(2), 240–256.

Kelly, J. S. (1993). Almost all social choice rules are highly manipulable, but a few
aren’t. Social Choice and Welfare 10(2), 161–175.

Kurz, S., A. Mayer, and S. Napel (2020). Weighted committee games. European Journal
of Operational Research 282(3), 972–979.

Laruelle, A. and F. Valenciano (2008). Voting and Collective Decision-Making. Cam-
bridge: Cambridge University Press.

Laruelle, A. and F. Valenciano (2012). Quaternary dichotomous voting rules. Social
Choice and Welfare 38(3), 431–454.

30



Laslier, J.-F. (2012). And the loser is . . . plurality voting. In D. S. Felsenthal and
M. Machover (Eds.), Electoral Systems: Paradoxes, Assumptions, and Procedures, pp.
327–351. Berlin: Springer.

Leech, D. (2003). Computing power indices for large voting games. Management
Science 49(6), 831–837.

Leech, D. and R. Leech (2013). A new analysis of a priori voting power in the IMF:
Recent quota reforms give little cause for celebration. In M. J. Holler and H. Nurmi
(Eds.), Power, Voting, and Voting Power: 30 Years After, pp. 389–410. Heidelberg:
Springer.

Leininger, W. (1993). The fatal vote: Berlin versus Bonn. Finanzarchiv 50(1), 1–20.

Maskin, E. and A. Sen (2016). How majority rule might have stopped Donald Trump.
New York Times. April 28, 2016.

Myerson, R. B. (1999). Theoretical comparisons of electoral systems. European Eco-
nomic Review 43(4-6), 671–697.

Napel, S. (2019). Voting power. In R. Congleton, B. Grofman, and S. Voigt (Eds.),
Oxford Handbook of Public Choice, Volume 1, Chapter 6, pp. 103–126. Oxford:
Oxford University Press.

Napel, S. and M. Widgrén (2004). Power measurement as sensitivity analysis: a
unified approach. Journal of Theoretical Politics 16(4), 517–538.

Nitzan, S. (1985). The vulnerability of point-voting schemes to preference variation
and strategic manipulation. Public Choice 47(2), 349–370.

Nurmi, H. (2006). Models of Political Economy. London: Routledge.

Ortmann, K. M. (1998). Conservation of energy in value theory. Mathematical Methods
of Operations Research 47(3), 423–449.

Parker, C. (2012). The influence relation for ternary voting games. Games and Economic
Behavior 75(2), 867–881.

Penrose, L. S. (1946). The elementary statistics of majority voting. Journal of the Royal
Statistical Society 109(1), 53–57.

Regenwetter, M., B. Grofman, A. A. J. Marley, and I. M. Tsetlin (2012). Behavioral
Social Choice (2nd edition ed.). New York, NY: Cambridge University Press.

Riker, W. H. (1986). The first power index. Social Choice and Welfare 3(4), 293–295.

31



Satterthwaite, M. A. (1975). Strategy-proofness and Arrow’s conditions: existence
and correspondence theorems for voting procedures and social welfare function.
Journal of Economic Theory 10(2), 187–217.

Shapley, L. S. (1953). A value for n-person games. In H. W. Kuhn and A. W. Tucker
(Eds.), Contributions to the Theory of Games, Volume II, pp. 307–317. Princeton, NJ:
Princeton University Press.

Shapley, L. S. and M. Shubik (1954). A method for evaluating the distribution of
power in a committee system. American Political Science Review 48(3), 787–792.
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– Appendix –

Further Comparisons of Voting Rules for m = 3

Borda vs.	Copeland	m=3

1 2

3

Figure A-1: Borda vs. Copeland

Borda vs.	PluralityR m=3

1 2

3

Figure A-2: Borda vs. plurality (instant) runoff
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Plurality vs.	Copeland	m=3
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3

Figure A-3: Plurality vs. plurality (instant) runoff and Copeland

Copeland	vs.	PluralityR m=3

1 2

3

Figure A-4: Copeland vs. plurality (instant) runoff
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Influence in IMF Executive Board under IAC

SSI(rP
|w) SSI(rPR

|w) SSI(rC
|w)

wpre wpost wpre wpost wpre wpost

USA 0.3583 0.3516 0.3683 0.3619 0.3716 0.3649
Japan 0.1139 0.1124 0.1261 0.1245 0.1240 0.1223
China 0.0684 0.1110 0.0769 0.1230 0.0751 0.1209
Netherlands 0.1203 0.0986 0.1329 0.1097 0.1308 0.1076
Germany 0.1057 0.0964 0.1175 0.1075 0.1153 0.1054
Spain 0.0888 0.0963 0.0992 0.1072 0.0971 0.1049
Indonesia 0.0707 0.0784 0.0795 0.0878 0.0776 0.0858
Italy 0.0761 0.0745 0.0853 0.0834 0.0834 0.0815
France 0.0773 0.0725 0.0867 0.0814 0.0847 0.0795
United Kingdom 0.0772 0.0725 0.0867 0.0814 0.0847 0.0795
Korea 0.0625 0.0681 0.0703 0.0766 0.0686 0.0747
Canada 0.0646 0.0605 0.0727 0.0682 0.0709 0.0665
Sweden 0.0608 0.0588 0.0686 0.0664 0.0668 0.0647
Turkey 0.0521 0.0578 0.0589 0.0651 0.0573 0.0634
South Africa 0.0612 0.0553 0.0689 0.0625 0.0671 0.0608
Brazil 0.0466 0.0549 0.0529 0.0621 0.0514 0.0604
India 0.0501 0.0546 0.0567 0.0617 0.0552 0.0600
Switzerland 0.0525 0.0516 0.0594 0.0583 0.0578 0.0567
Russian Federation 0.0456 0.0507 0.0517 0.0574 0.0503 0.0558
Iran 0.0489 0.0453 0.0553 0.0514 0.0538 0.0499
Utd. Arab Emirates 0.0458 0.0450 0.0519 0.0511 0.0505 0.0496
Saudi Arabia 0.0500 0.0358 0.0567 0.0407 0.0551 0.0395
Dem. Rep. Congo 0.0258 0.0288 0.0295 0.0329 0.0286 0.0318
Argentina 0.0326 0.0282 0.0372 0.0322 0.0360 0.0311

Table A-1: Influence in IMF Executive Board for pre- and post-reform weights and m = 3
under IAC (groups as of Dec. 2018 indicated by largest member)
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Influence and Transparency Maximizers under IAC

(a) m = 3 (b) m = 4

rB, rC, rP, rPR

rC, rP, rPR
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Figure A-5: Maximizers of player 1’s influence under IAC
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Figure A-6: Most transparent voting rules under IAC
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