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Abstract: We introduce the prediction value (PV) of player i as the difference between the
conditional expectations of v(S) when i cooperates or not in a probabilistic TU game. The
latter combines a standard TU game and a probability distribution over the set of coalitions.
The PV reflects the importance of information about a given player’s behavior for predicting,
e.g., committee decisions that are subject to opinion interdependencies. The PV is characterized
by anonymity, linearity, a consistency requirement and two normalization conditions. Every
multinomial probabilistic value, hence every binomial semivalue, coincides with the PV for
a particular family of probability distributions. So the PV can be regarded as a power index in
specific cases. Conversely, some semivalues – including the Banzhaf but not the Shapley value –
can be interpreted in terms of informational importance.
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1. INTRODUCTION

Concepts of power and importance in models of cooperation are central to numerous studies in
sociology, political science, mathematics, and economics. Much of the literature applies values
or power indices which attribute fixed roles – often perfectly symmetric – to all players in the
underlying coalition formation process and then focus on their marginal contributions. Most
prominent examples are the Shapley value and Banzhaf value (Shapley 1953; Banzhaf 1965);
others can be found in Roth (1988), Owen (1995), Felsenthal and Machover (1998) or Laruelle
and Valenciano (2008b). The values differ in how marginal contributions to distinct coalitions
are weighted.

With an appropriate rescaling, weights on specific marginal contributions can always be in-
terpreted as a probability distribution. So Shapley value, Banzhaf value, and more generally
probabilistic values (Weber 1988) correspond to the expectation of a difference. This difference
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2 THE PREDICTION VALUE

is between the worth of a random coalition S which is drawn from 2N\i according to a value-
specific probability distribution Pi and the worth of the same coalition when i joins. That is, a
probabilistic value equals EPi [v(S ∪ i) − v(S)] for a fixed family of distributions {Pi}i∈N.1

Unless the probabilistic value in question is also a (multibinary or) multinomial probabilistic
value (cf. Puente 2000; Freixas and Puente 2002; Carreras and Puente 2015a), the presence of
player i in the realized coalition S can statistically depend on whether player j 6= i belongs to
it or not. This may plausibly be the case, for example, when voting is preceded by a process
of information transmission or opinion formation.2 Unfortunately the expectation EPi [v(S ∪
i) − v(S)], interpreted as power or importance of player i, can behave in strange ways when the
family of distributions {Pi}i∈N implicates correlated behavior. The following example illustrates
the conceptual problem.3

Example 1. Consider the canonical simple majority decision rule with an assembly of 5 voters.
Let P be the probability distribution that assigns probability 0 to the 20 coalitions containing
exactly two or exactly three voters; and equal probability of 1/12 to each of the remaining 12
coalitions. Irrespective of whether we derive Pi by projecting P to 2N\i or by conditioning P
on i 6∈ S, the probabilistic value EPi [v(S ∪ i) − v(S)] is zero for all players. However, that
no member of this decision body should have any voting power or importance is somewhat
counterintuitive.

Here, the expectation of a difference is uninformative since non-zero marginal contributions
v(S ∪ i) − v(S) > 0 do not count when the underlying probability distribution P treats S ∪ i
and S as null events. More generally, the problem with the expected marginal contribution
EPi [v(S ∪ i) − v(S)] is that it treats i’s decision, say, to change her no vote into a yes (or vice
versa) as being fully detached from the respective probabilities of observing the considered two
coalitions with and without i.

This paper proposes an alternative approach: namely, to consider the difference of two expec-
tations. These expectations will be derived from a given probabilistic description P of coalition
formation. The latter plays the same role as {Pi}i∈N does for probabilistic values or corre-
sponding families {Pvi }i∈N do for values that evaluate marginal contributions in game v-specific
ways.4 However, we take P as a primitive of the collective decision situation under investigation,
rather than of the solution concept.

We thus depart from most of the previous literature in two respects: first, similar to Laruelle
and Valenciano (2008a), we explicitly consider probabilistic games (N, v, P) where (N, v) is a
standard TU game and P is a probability distribution onN’s power set 2N. Second, we introduce
a new value that reflects the difference between two conditional expectations. Specifically, we

1It is equivalent to consider suitable probability distributions Pi on {S ∈ 2N : i ∈ S} and then to
evaluate EPi

[v(S) − v(S \ i)]. We adopt the usual notational simplifications like writing S \ i or S ∪ ij
instead of S \ {i} or S ∪ {i, j}.

2See, for example, the seminal opinion formation model of DeGroot (1974): individuals start with
initial opinions (beliefs) on a subject represented by an n-dimensional vector of probabilities, and repeat-
edly update their individual opinion based on the current opinions of their peers. Different structures of
consensus formation can be captured by different network topologies.

3We owe this example to Moshé Machover.
4This is, for instance, the case when positive probability is attached only to minimal winning coalitions

(see, e.g. Holler 1982 and Holler and Li 1995).
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define the prediction value (PV) of any given player i ∈ N as the difference in v’s expected
value when the distribution P|i which conditions P on the event {i ∈ S} and the distribution P|¬i
which conditions on {i /∈ S} are applied. In other words, we suggest to evaluate EP|i[v(S)] −
EP|¬i[v(S)] instead of EPi [v(S∪i)−v(S)]. The two coincide in interesting special cases, but not
in general. In particular, our approach is similar in spirit but factually differs from the evaluation
of conditional decisiveness as in Laruelle and Valenciano (2005, 2008a).

The margin between the respective conditional expectations can be interpreted as the impor-
tance of a player in the probabilistic game (N, v, P) in several ways. Most generally, it captures
the informational or predictive value of knowing i’s decision in advance of the process which
divides N into some final coalition S and its complement. Moreover, in case i’s membership
of the coalition which supports a specific bill or cooperates in a joint venture is statistically in-
dependent of others, the PV provides a measure of i’s influence on the outcome of collective
decision making, or of i’s power in (N, v, P).

The existing literature – the references above are a small selection – obviously does not suffer
from a shortage of solution concepts in general, nor of ones targeted at quantifying a player’s
power in TU games. But as Aumann (1987) argued: “Different solution concepts are like dif-
ferent indicators of an economy; different methods for calculating a price index; different maps
(road, topo, political, geologic etc., not to speak of scale, projection, etc.); . . . They depict or
illuminate the situation from different angles; each one stresses certain aspects at the expense
of others.” Taking up Aumann’s metaphor, we do not suggest another scale or projection of a
player’s vector of marginal contributions here. We rather propose to look at a slightly different
kind of map. For some situations – involving statistically independent cooperation decisions –
the picture may look identical to that generated by, say, the Banzhaf value (giving the latter
additional force/basis/clout); in others, such as Example 1, it will provide a new perspective.

Example 1 (continued). In the considered assembly, the probability of coalition Swas P(S) = 0
for |S| = 2 or |S| = 3 and P(S) = 1/12 otherwise. The respective conditional probabilities
follow from Bayes’ rule. In particular, knowing that player i cooperates (i.e., is part of S) gives
rise to

P|i(S) =

{
1
6 if S = {i} or S = N\j, j 6= i or S = N,
0 otherwise.

(1)

Similarly, we obtain

P|¬i(S) =

{
1
6 if S =∅ or S = {j}, j 6= i or S = N\i,

0 otherwise,
(2)

in case i is known not to cooperate. The expected value of v(S), which corresponds to the
probability that the assembly passes the proposal in question, is changed by the observation that,
say, voter 1 supports rather than opposes it by

EP|1[v(S)] − EP|¬1[v(S)] =
∑
S31

v(S) · P|1(S) −
∑
T 631

v(T) · P|¬1(T)

=
5

6
−
1

6
=
2

3
. (3)

The information that player 1 votes in a particular way is not enough to predict an assembly
decision perfectly. (That would be the case if EP|1[v(S)] − EP|¬1[v(S)] = 1.) But it changes
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the odds significantly. Player 1 may not have voting power in the traditional sense, but his or
her vote is important from an informational perspective. It may be quite valuable to investors
or speculators, for instance. The same applies here to the other members of the assembly to
identical degrees. Asymmetric voting weights or asymmetric roles in opinion dynamics and
coalition formation would naturally give rise to different PV numbers for the respective assembly
members.

A null player who has a voting weight that cannot matter for matching a required majority
threshold and whose behavior is uncorrelated with the remaining players has a PV of zero. En-
dowing the same player with greater voting weight will at some point translate into a positive
value – reflecting the difference that her vote can now make for the outcome, just like tradi-
tional indices. But leaving initial voting weights unchanged, the PV will also ascribe positive
importance to the null player if interdependencies make its cooperation a predictor of whether a
proposal is passed.

Plausible causes for dependencies abound and, for instance, include the possibility that the
player in question is actually without vote but ‘followed’ by the official voters as, say, their para-
mount leader. The proposed change of perspective – from, traditionally, the expected difference
that a player would make by an ad-hoc change of coalition membership towards the difference
in expectations for the collective outcome which is associated with that player’s cooperation –
opens the route to studying voting and coalition formation as the result of social interaction.
Final votes may be determined by whether i is initially a supporter or opponent even if i is a
null player of (N, v), and this is arguably a source of power just like official voting weight. We
believe that evaluating changes in conditional expectations can help to quantify this in future
research.

Here, we introduce and investigate properties of the prediction value. We formally define it
in Section 3, after collecting some preliminaries in Section 2. We describe a set of character-
istic properties in Section 4 and relate the PV to traditional probabilistic values in Section 5.
The considered distributions P could embody the a prioristic presumptions of traditional power
measures, i.e., be the uniform distribution on 2N or the space of permutations on N. (Interest-
ingly, the latter does not make PV and Shapley value coincide.) But P could equally well be
based on empirical data – say, observations of past voting behavior in a decision making body
like the US Congress, EU Council, etc. We briefly conduct such a posteriori analysis with the
PV in an application to the Dutch Parliament in Section 6, and we conclude in Section 7. All
mathematical proofs are contained in the Appendix.

2. PRELIMINARIES

A TU game is an ordered pair (N, v) where N ⊂ N represents a non-empty, finite set of players
and v : 2N → R is the characteristic function which specifies the worth v(S) of any subset or
coalition S ⊆ N and satisfies v(∅) = 0. The set of all TU games is denoted by G, and the set of
all TU games with player set N by GN.

(N, v) ∈ G is a simple game if v is a monotone Boolean function, i.e., v(S) ∈ {0, 1} and
v(S) 6 v(S′) for all S ⊆ S′ ⊆ N, such that v(∅) = 0 and v(N) = 1. A coalition S with
v(S) = 1 is then called winning. Given any non-empty coalition S ⊆ N, the so-called unanimity
game uS is defined by uS(T) = 1 if S ⊆ T and uS(T) = 0 otherwise. We will drop the
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player setN from our notation when it is clear from the context; so uS is shorthand for (N,uS).
Moreover, we refer to u{i} simply as ui.

Player i is called a dummy player in (N, v) if v(S∪ i) − v(S) = v(i) for all S ⊆ N \ i. Every
player i with v(i) = 0 is said to be dependent. A dummy player who is dependent is also known
as a null player. If (N, v) is a simple game and v(S) = 1 if and only if i ∈ S, then player i is
called a dictator.

TU games (N, v) have explicitly been combined with probability distributions P over coali-
tions S ⊆ N since Owen (1972). P is typically mentioned in order to provide probabilistic
motivation or foundations for a particular solution concept, not as a characteristic of a collective
decision making situation. We want to emphasize its role as a primitive and define a proba-
bilistic game as an ordered triple (N, v, P), where (N, v) is a TU game and P is a probability
distribution on the power set ofN, 2N. The set of all probabilistic games is denoted by PG; and
PGN is the restriction to the class of probabilistic games with player set N.

A TU value is a function which assigns a real number to all elements of N for any given TU
game. An extended value is a mapping ϕ that assigns to each probabilistic game (N, v, P) a
vector ϕ(N, v, P) ∈ R|N|. ϕi(N, v, P) will be interpreted as a measure of the ‘difference’, in
an abstract sense, that player imakes for the probabilistic game (N, v, P). It might, for instance,
relate to the average of marginal contributions v(S ∪ i) − v(S) that are made by i to coalitions
S ∈ N \ i, to the difference that i makes to a potential function (i.e., a mapping from PG to
R) when i is added to the player set N′ such that N′ ∪ i = N, or to any other indicator of
how important the behavior or presence of player i might be to the members of N or an outside
observer.

TU values and extended values are defined on two distinct domains, G and PG. Extended
values can be regarded as technically the more general concept because any given TU value can
be turned into an extended value simply by ignoring the distribution P that is specified as part of
(N, v, P). For instance,

φi(N, v, P) =
∑
S 63i

|S|!(|N|− |S|− 1)!
|N|!

(v(S ∪ i) − v(S)) (4)

correspondingly ‘extends’ the Shapley value and the (extended) Banzhaf value can be defined
by

βi(N, v, P) =
1

2n−1

∑
S 63i

(v(S ∪ i) − v(S)).5 (5)

Both the original Shapley TU value and the Banzhaf TU value (which was at first restricted
to simple games, and later extended to general TU games by Owen 1975) are special instances
of probabilistic values, as introduced by Weber (1988).6 They are defined by

Ψi(N, v,Q) =
∑
S3i

Qi(S)(v(S) − v(S \ i)) = EQi [v(S) − v(S \ i)] (6)

5When the considered set of playersN is clear from the context, we simplify notation by writing
∑
S 63i

instead of
∑
S⊆N: i/∈S, or

∑
S3i instead of

∑
S⊆N: i∈S.

6Weber (1988) originally defined a “probabilistic value” for each individual player i ∈ {1, . . . , n} and
referred to the corresponding n-vector as a group value. We follow the later terminology of Monderer
and Samet (2002).
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such that each element Qi of the collection Q = {Qi}i∈N denotes a probability distribution on
{S ⊆ 2N : i ∈ S}, or

Ψi(N, v,Q
′) =
∑
S 63i

Q′i(S)(v(S ∪ i) − v(S)) = EQ′i [v(S ∪ i) − v(S)] (7)

such that Q′i denotes a probability distribution on 2N\i.7

Several subclasses of probabilistic values have received special attention. Semivalues satisfy
(6) and (7) for weights Qi(S) and Q ′i(S), respectively, which are identical for all i ∈ N and
depend on S only via its cardinality |S| (Dubey et al. 1981). Then for all i ∈ N

Ψi(N, v,Q
′) = fqi (N, v) =

∑
S⊆N\i

q|S| ·
(
v(S ∪ i) − v(S)

)
(8)

for a vector of n non-negative numbers q = (q0, . . . , qn−1) 6= 0 with
n−1∑
k=0

(
n− 1

k

)
qk = 1. (9)

The Shapley value arises by setting qk = 1

n(n−1k )
; the Banzhaf index for qk = 1

2n−1
. The latter –

but not the former – is also a binomial semivalue: there exists 0 < p < 1 such that (8) holds for

qk = pk (1− p)n−k−1 for k = 0, . . . , n− 1. (10)

See Dubey et al. (1981), Carreras and Freixas (2008), and Carreras and Puente (2012).
Multinomial values have been introduced by Puente (2000) and are obtained from (6) or (7)

by requiring that each player j is part of the formed coalition with probability p̃j independently
of any other player.8 Let gp̃i (N, v) denote the multinomial value of player i for a fixed vector
p̃ = (p̃1, . . . , p̃n) ∈ [0, 1]n. Then for all i ∈ N

Ψi(N, v,Q
′) = gp̃i (N, v) =

∑
S⊆N\i

∏
j∈S

p̃j
∏

j∈N\(S∪i)

(1− p̃j) ·
(
v(S ∪ i) − v(S)

)
. (11)

3. THE PREDICTION VALUE

For a given probabilistic game (N, v, P) define the conditional probability distributions P|i and
P|¬i as follows: for all S ⊆ N

P|i(S) =


P(S)∑

T3i
P(T) if i ∈ S and

∑
T3i

P(T) 6= 0,

0 otherwise,
(12)

7The argument (N, v,Q) in (6) and (7) is more general than a probabilistic game. The latter follows
as the special case in which each Qi stems from the same probability distribution Q.

8Carreras and Puente (2015a) illustrate possibilities to connect probabilities p̃1, . . . , p̃n to political
positions on a left-to-right axis. See Giménez et al. (2014) and Carreras and Puente (2015b) for ap-
plications of multinomial values to partnership formation and coalition structures in cooperative games.
Properties of multinomial values, such as their monotonicity with respect to v, are studied by Domènech
et al. (2016). Calvo and Santos (2000), among others, discuss further subclasses of probabilistic values
such as weighted Shapley values, weak semivalues or weighted weak semivalues.
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and, similarly,

P|¬i(S) =


P(S)∑

T 63i
P(T) if i /∈ S and

∑
T 63i

P(T) 6= 0,

0 otherwise.
(13)

Laruelle and Valenciano (2005) have suggested to consider the conditional decisiveness mea-
sures

Φ+
i (N, v, P) = EP|i[v(S) − v(S \ i)] (14)

and
Φ−
i (N, v, P) = EP|¬i[v(S ∪ i) − v(S)], (15)

as indicators of player i’s importance in (N, v, P).9 It is easy to see that Φ+(N, v, P) =

Φ−(N, v, P) = β(N, v, P) if and only if P(S) ≡ 2−|N| for all S ⊆ N, and one can similarly
obtain identity with the (extended) Shapley value. Namely,

Φ+(N, v, P) = φ(N, v, P) ⇐⇒ P(∅) = 0, P(S) =
1

s
(
n
s

)∑n
t=1

1
t

if S 6= ∅, (16)

Φ−(N, v, P) = φ(N, v, P) ⇐⇒ P(N) = 0, P(S) =
1

(n− s)
(
n
s

)∑n
t=1

1
t

if S 6= N (17)

with n = |N| and s = |S| (see Laruelle and Valenciano 2005, Prop. 3).10

We propose an altogether different approach to assessing the importance ofN’s members in a
probabilistic game (N, v, P). It is not based on probabilistic values, nor marginal contributions in
general. Weighted marginal contributions may misrepresent player i’s importance in (N, v, P) in
that they implicitly treat i’s decision, say, to change her no vote into a yes (or vice versa) as being
fully detached from the respective probabilities of observing the considered two coalitions with
and without i. Example 1 already highlighted the effect that non-zero marginal contributions
v(S∪i)−v(S) > 0 do not count when the underlying probability distribution P treats both events
S∪ i and S as null events. Adding up marginal contributions also leads to strange conclusions if
only one of the coalitions S and S ∪ i has positive probability.

Example 2. Consider an assembly of 3 voters in which coalitions {1, 3}, {2, 3} and {1, 2, 3} are
winning. Assume voters 2 and 3 are enemies and always vote contrary to each other. Here,
coalition S = {1, 2} might have positive probability under P and P|¬3, while P(N) = 0. A
problem for measures like Φ−(N, v, P) is then that they are strictly increased by a contribution
which 3 makes in the null event of joining S = {1, 2}.

One thing that outside observers, members j 6= i ofN or i herself might still care about in the
examples is the informational gain that comes with the knowledge: “i will (not) be part of the
eventually formed coalition”. Knowing this might imply that j cannot (or must) be amongst the
members of the coalition. This may have ramifications for the expected surplus that is created or
the passage probability of the bill being debated. In other words, it may be useful to base one’s
evaluation of collective decision making as described by (N, v, P) on P|i rather than P when i is
known to support the decision. This suggests looking at the difference EP|i[v(S)] −EP[v(S)] as

9Laruelle and Valenciano (2008a) refer to Φ+
i (N, v, P) as player i’s “interim expected marginal con-

tribution” and identify its relations with different classes of probabilistic values.
10Note that the respective distributions P which need to be assumed in order to obtain the Shapley

value as a conditional expected marginal contribution in (16) and (17) differ.
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a way of quantifying i’s effect on the outcome. And it is arguably of similar interest – and may
yield a rather different quantification of the difference that i’s decision makes – not to look at
how much i’s support increases the expected worth v(S) but at how much i’s opposition lowers
it, i.e., EP[v(S)] − EP|¬i[v(S)]. Combining these two evaluations of how knowledge of i’s
decision changes the expectation of the game by summing them, we obtain:

Definition 1. The prediction value (PV) of player i in the probabilistic game (N, v, P) is defined
as

ξi(N, v, P) = EP|i[v(S)] − EP|¬i[v(S)] (18)

=
∑
S3i

v(S) · P|i(S) −
∑
T 63i

v(T) · P|¬i(T).

Remark 1. In case that coalition membership is statistically independent for every i 6= j, i.e., if
P is a product measure on 2N, the equality P|i(S) = P|¬i(S \ i) holds whenever i ∈ S. Then
equations (14), (15), and (18) all evaluate to the same number – for instance, to the Banzhaf
value if P(S) ≡ 2−|N|. That the “expectation of a difference” in (14) or (15) coincides with the
“difference between two expectations” in (18), however, fails to hold in general. In particular,
we will show in Corollary 2 that there is no probability distribution P which would allow the
Shapley value to be interpreted as measuring informational importance.

Remark 2. The restriction of the prediction value to simple games has been identified by
Häggström et al. (2006) as playing a key role in extending the Condorcet jury theorem (on
asymptotically correct simple majority decisions by n statistically independent voters) to
weighted majority decisions with arbitrary joint vote distributions.11 Häggström et al. call the
difference between expectations based on P|i and P|¬i the “effect” of voter i. Their observation
that player i’s effect can be interpreted as a normalized form of the correlation between i’s vote
and the random jury outcome extends straightforwardly to probabilistic TU games. Namely,
writing 1{i∈S} for the indicator function of event {i ∈ S} and pi = P({S : i ∈ S}), the covariance
of v(S) and 1{i∈S} is

Cov
(
v(S), 1{i∈S}

)
= EP[[v(S) · 1{i∈S}] − EP[v(S)] · EP[1{i∈S}] (19)

= EP
[
v(S) ·

(
1{i∈S} − EP[1{i∈S}]

)]
= piEP

[
v(S) ·

(
1− pi

)∣∣i ∈ S]+ (1− pi)EP
[
− piv(S)

∣∣i /∈ S]
= pi(1− pi) · ξi(N, v, P). (20)

Dividing by standard deviations σv(S) and σ1{i∈S} =
√
pi(1− pi), the PV and the correlation

coefficient Corr
(
v(S), 1{i∈S}

)
can be seen to satisfy

ξi(N, v, P) = Corr
(
v(S), 1{i∈S}

)
·

σv(S)√
pi(1− pi)

. (21)

11Neeman (2014) further extended the analysis to weighted plurality decisions.
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4. CHARACTERIZING THE PREDICTION VALUE

We will now provide an axiomatic characterization of the prediction value. We begin with two
classical conditions that are part of many axiomatic systems in the literature on TU values. The
first is anonymity, which requires that the indicated difference to the game that is ascribed to
any player by an extended value does not depend on the labeling of the players. The second
is linearity, which demands of an extended value that it is linear in the characteristic function
component v of probabilistic games.

Definition 2. Consider two probabilistic games G = (N, v, P) and G′ = (N′, v′, P′) related
through a bijection π : N → N′ such that for all S ⊆ N, v(S) = v′(πS) and P(S) = P′(πS)
where πS := {π(i)|i ∈ S}. An extended value ϕ is anonymous if for every such G and G′ ∈ PG

ϕi(N, v, P) = ϕπ(i)(N
′, v′, P′) for all i ∈ N. (22)

Definition 3. An extended value ϕ is linear if for all (N, v, P), (N, v′, P) ∈ PG and real con-
stants α,β

ϕ
(
N,αv+ βv′, P

)
= αϕ (N, v, P) + βϕ

(
N, v′, P

)
. (23)

Linearity combines two properties, scale invariance and additivity. Especially the latter is far
from being innocuous.12 But linearity is frequently imposed on solution concepts for TU games;
and the PV, as the difference of two expectations, embraces it rather naturally.

The third characteristic property of the PV concerns the way how the respective extended
values of two games G and G′ compare when one can be viewed as a reduced form of the other.

Definition 4. Given G = (N, v, P) ∈ PG and a dependent player i ∈ N, the probabilistic game
G−i = (N−i, v−i, P−i) ∈ PG is a reduced game derived fromG by removal of i ifN−i = N\i,
and for all S ⊆ N \ i

P−i(S) = P(S) + P(S ∪ i) (24)

v−i (S) =

{
P(S)

P(S)+P(S∪i) · v(S) +
P(S∪i)

P(S)+P(S∪i)v(S ∪ i) if P−i(S) > 0, 13

0 otherwise.
(25)

So, when one moves from a given probabilistic game G to the reduced game G−i, first, player i
is removed from the set of players; second, the probabilities of all coalitions in G which only
differ concerning i’s presence are aggregated; and, third, the corresponding new worth v−i(S)
of coalitions S ⊆ N−i is the convex combination of the associated old worths, v(S) and v(S∪i),
weighted according to the respective probabilities under P. We will require that the extended
value of any player j ∈ N−i stays unaffected by the removal of i.14

Definition 5. An extended valueϕ is consistent if for allG = (N, v, P) ∈ PG and all dependent
players i ∈ N in v, we have ϕj(G) = ϕj(G−i) for all j ∈ N \ i.

12See, e.g., Felsenthal and Machover (1998, 6.2.26) and Luce and Raiffa (1957, p. 248).
13This definition of v−i(S) differentiates our reduction operation from the one in Laruelle and Valen-

ciano (2008a, p. 76), which allows to interpret the expected values of v and v−i in terms of a potential
function in special cases (cf. Hart and Mas-Colell 1989). Note that if i were not a dependent player, i.e.,
v(i) 6= 0, then v−i would not be a well-defined TU game because v−i(∅) 6= 0 in this case.

14The condition is vaguely reminiscent of the amalgamation properties considered by Lehrer (1988)
or Casajus (2012).



10 THE PREDICTION VALUE

One reason for why this consistency property could be desirable is the following. Suppose
that the considered model is misspecified in the sense that a player of interest in the game is
not taken into account by the rest of the players (or an outside observer). For instance, consider
the situation of a voting game G′ = (N′, v′, P′), where the presence of a lobbyist i has been
neglected. The more accurate model would include the lobbyist and be G = (N′ ∪ i, v, P).
The effect of the lobbyist endorsing a proposal or opposing it would explicitly be captured by
the probability distribution P: for example, voters with strong ties to i may be likely to vote
the same way, while others behave oppositely. Coalitions S and S ∪ i which differ only in i’s
presence will consequently have very different P-probabilities depending on whether S includes
i’s fellow travelers or opponents. But if the probability P′ and value v′ of each coalition T ⊆ N′
in the ‘misspecified’ game without i are defined in a probabilistically correct way, i.e., if the
misspecified game G′ equals G−i, then the assessment of any actor j 6= i should be unaffected
by whether one considers G or G−i. Consistency can thus be seen as formalizing robustness to
probabilistically correct misspecifications.

Proposition 1. The prediction value is anonymous, linear, and consistent.

Proposition 1 is not enough to fully characterize the PV. For instance, for every a, b ∈ R,
the extended value ϕ(a,b)

i (N, v, P) = a · EP|i[v(S)] + b · EP|¬i[v(S)] satisfies anonymity,
linearity and consistency.15 Our characterization in Theorem 1 below will use that if an extended
value is linear and consistent, it is fully determined by its image for the subclass of all 2-player
probabilistic games.16 The question then is how the extended values of 2-player probabilistic
games should suitably be restricted.

Before giving an answer it is worth recalling two implications of i being part of the formed
coalition: first, i’s presence means that i contributes to the formed coalition her voting weight,
productivity, etc. This reveals information about the expected worth directly. But, second,
i’s presence also affects the expected worth indirectly because it reveals information about the
presence and contributions of other players if the behavior of N \ i and of i are not statistically
independent. In case of independence, i.e., if the presence of i ∈ N has no informational value
according to P, and if moreover i is a null player in the TU-game (N, v), then a reasonable
extended value can be expected to assign zero to i. If, in contrast, knowledge of the behavior of
null player i does change the odds of a proposal being passed, then i has positive informational
value.

For illustration, consider a voting game in which j is a dictator according to the rules formal-
ized by v. Let the voting behavior of j be perfectly correlated with that of some other player i
(formally a null player). Now note that it is not part of the model (N, v, P), which mathemat-
ically describes the rules of the collective decision body involving i and j and the random out-
comes of coalition formation processes, why the votes of i and j always coincide. ‘Null player’ i
might simply follow ‘dictator’ j in all his decisions. Alternatively, player i could be irrelevant

15To see this, observe that the desired properties are attained by the extended values considered in
Lemma 1 (i) and (ii) below, and are preserved by linear combinations.

16Lemma 3 below allows to characterize all anonymous, linear and consistent extended values by
setting ϕi({i, j}, uj, P) := fij(P) and ϕi({i}, ui, P) := gi(P) for anonymous functions f, g. The latter
can depend on P in arbitrary anonymous ways. This is why the properties in Proposition 1 do not yield
an analogue to Weber’s (1988) elegant marginal contributions-based formula for linear positive values
which have the dummy property, i.e., probabilistic values.
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merely from a formal perspective, i.e., have no say de jure; while it is her who imposes all her
wishes on j – that is, she rules de facto. In either case the informational values of i and j are
identical. They are also maximal (and could plausibly be normalized to, say, 1) in the sense that
the outcome can be predicted perfectly when knowing that i or j votes yes or no.

We combine the requirement that an independent null player i should be assigned an extended
value of zero with the requirement that i has a value of one in the considered perfect correlation
case as follows:17

Definition 6. An extended value ϕ satisfies the informational dummy-dictator property (IDDP)
if for i ∈ N and |N| = 2

ϕi({i, j}, uj, P) = P|i(ij) − P|¬i(j). (26)

Regarding dictators themselves it makes sense to impose the following for 1-player proba-
bilistic games:

Definition 7. An extended value ϕ satisfies full control if ϕi({i}, ui, P) = 1 for all i, P where
P({i}) > 0, and ϕi({i}, ui, P) = 0 otherwise.

This formalizes that if N consists of just a single player i ∈ N with v(i) = ui(i) = 1 then
i’s importance or the difference that imakes to this game should plausibly be evaluated as unity.
Immediately from the definition of the PV we obtain

Proposition 2. The prediction value satisfies full control and IDDP .

Remark 3. IDDP implies a positive extended value for a null player i even if i’s behavior
is imperfectly but still positively correlated with that of a dictator j. This is, e.g., the case
when a yes-vote by i is made more likely by most other players voting yes, i.e., for the implicit
probabilistic model behind the Shapley value. For a probabilistic game with a dictator where P
reflects any Shapley value-like probabilistic assumptions, this means that PV and Shapley value
φ will not coincide because the Shapley value of null players is zero.

We have the following characterization result:

Theorem 1. There is a unique extended value ϕ which satisfies linearity, consistency, full con-
trol and IDDP . It is anonymous and ϕ ≡ ξ.

We note that the four properties in Theorem 1 are independent and non-redundant.

Lemma 1.
(i) The extended value

ϕ1i (N, v, P) =
∑

S⊆N,i∈S
αS · EP|i (uS) , (27)

with v =
∑
S⊆N αS · uS being the unique decomposition of v into unanimity games,

satisfies linearity, consistency, full control but not IDDP .
(ii) The extended value

ϕ2i (N, v, P) = ξi(N, v, P) −ϕ
1
i (N, v, P) (28)

satisfies linearity, consistency, IDDP but not full control.

17The case of independence corresponds to P|i(ij) = P|¬i(j), while the correlated dictator case
amounts to P|i(ij) = 1 and P|¬i(j) = 0.
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(iii) The extended value

ϕ3i (N, v, P) =
∑
S⊂N,

i∈S,|S|62

v(S) · P|i(S) −
∑
T⊂N,

i/∈T,|T |62

v(T) · P|¬i(T) (29)

satisfies linearity, full control, IDDP but not consistency.
(iv) Let |N| > 3 and v =

∑
S⊆N αS · uS. The extended value

ϕ4i (N, v, P) =
∑

S⊆N,αS 6=0
ξi(N,uS, P) (30)

satisfies consistency, full control, IDDP but not linearity.

5. RELATION BETWEEN PREDICTION VALUE AND PROBABILISTIC VALUES

The example values discussed earlier (like φ,β,Φ+, Φ−) all are probabilistic values, i.e., they
have in common that they weight marginal contributions of a player by some probability mea-
sure. We already noted in Remark 1 that the natural extension of the Banzhaf value agrees
with the prediction value if P(S) ≡ 2−|N|. We now study the relationship between (extended)
probabilistic values and the prediction value somewhat more generally.

Following Weber (1988), the class of probabilistic values is characterized by (i) linearity, (ii)
positivity: ϕ(N, v, P) > 0 if v is monotonic and (iii) the dummy player property: ϕi(N, v, P) =
v(i) if i is a dummy. The PV is not a probabilistic value. It is linear (see Proposition 1) but
violates (ii) and (iii).18

Theorem 2. Let Ψ be a probabilistic value as defined in (6). The identity Ψ(·, Q) ≡ ξ(·, P)
holds for n > 1 if and only if there exist probabilities 0 < p̃i < 1 for each player such that

Qi(S ∪ i) = P|i(S ∪ i) =
∏
j∈S

p̃j ·
∏

j∈N\(S∪i)

(
1− p̃j

)
(31)

holds for all S ⊆ N\i, i ∈ N and

P(S) =
∏
j∈S

p̃j ·
∏
j∈N\S

(
1− p̃j

)
(32)

holds for all S ⊆ N.

The theorem shows that a probabilistic value Ψ is a PV if and only if it is a multinomial
value gp̃, i.e., satisfies (11), for an interior vector of probabilities p̃ = (p̃1, . . . , p̃n). This also
clarifies the connection between semivalues and the prediction value. Namely, a semivalue fq

can be interpreted as a PV if and only if fq is also a multinomial value gp̃. Identity fq ≡ gp̃ and
the fact that weightingsQi(S) can depend only on |S| for semivalues imply (i) p̃i = p̃j =: p for
all i, j ∈ N in Theorem 2 and (ii) q satisfies (10) for p. So we obtain:

18See Remark 3 on the possibility of ξi(N, v, P) > 0 for a null player i. Positivity is violated, e.g., for
the dummy-dicator setting (26) when i and j always vote contrary such that P|i(ij) = 0 and P|¬i(j) = 1.
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Corollary 1. For a given semivalue fq and n > 1 there exists P such that fq(·) ≡ ξ(·, P) on
GN if and only if fq is a binomial semivalue, i.e., q satisfies (10) for some p ∈ (0, 1).19

Because the Shapley value φ is no binomial semivalue and differs from any such value on GN

when |N| > 3, we have:

Corollary 2. For n > 3 there exists no P such that φ(·) ≡ ξ(·, P) on GN.

6. PREDICTION VALUES IN THE DUTCH PARLIAMENT 2008–2010

As illustration of the prediction value’s practical applicability and of how its informational im-
portance indications can be very different from power ascriptions by traditional values, we con-
sider the seat distribution and voting behavior in the Dutch Parliament between 2008 and 2010.
This was the period of the left-centered Balkenende IV government, which consisted of Christian
democrats from the CDA and Christen Unie parties and the social democratic PvdA.

CDA CU D66 GL PvdA PvdD PVV SGP SP Verdonk VVD
Seats 41 6 3 7 33 2 9 2 25 1 21
β 0.597 0.073 0.038 0.089 0.398 0.026 0.120 0.026 0.306 0.013 0.200
φ 0.317 0.036 0.021 0.044 0.225 0.015 0.061 0.015 0.155 0.007 0.104
Φ+ 0.665 0.040 0.005 0.051 0.283 0.004 0.074 0.004 0.235 0.001 0.210
Φ− 0.660 0.021 0.004 0.050 0.434 0.005 0.061 0.002 0.140 0.000 0.131
ξ 0.782 0.318 0.248 0.468 0.330 0.023 0.369 0.182 0.217 0.217 0.278

TABLE 1. Values in the Dutch Parliament

The distribution of the 150 seats in parliament between its eleven parties is displayed in the top
part of Table 1. The three government parties held a majority of 80 out of 150 seats. When voting
on non-constitutional propositions, the Dutch Parliament applies simple majority rule. It is
straightforward to define a voting game with this information, and to calculate the corresponding
a priori Banzhaf and Shapley values β and φ.

We used the parliamentary information system Parlis20 in order to extract information on
members, meetings, votes and decisions on propositions in the 2008–2010 period. From the
records of regular plenary voting rounds, where parties vote as blocks, we derived the empirical
frequencies of the 211 conceivable divisions into yes and no-camps from 2720 observations.21

Defining P by these empirical frequencies, we calculated the corresponding prediction values ξi

19In some definitions in the literature the extreme cases p = 0 and p = 1 are allowed, too, with the
convention 00 = 1. For p = 0 we would get the dictatorial index and for p = 1 the marginal index.
See Owen (1978) for details. However, note that neither p = 0 nor p = 1 satisfy the conditions from
Theorem 2.

20The data is available through http://data.appsvoordemocratie.nl
21We pooled all regular plenary votes in order to illustrate the simplest way in which data can be used

to infer interdependencies in a voting body – one might want to split the data with respect to topics, or
weight distinct calls by their importance, in actual political analysis. Note that the Dutch Parliament’s
chairperson assumes that parties vote as blocks unless some MP demands voting by call. Only then can
members of the same party vote differently. We excluded such cases of ‘non-coherent voting’ from our
analysis.
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of the parties as well as their positive and negative conditional decisiveness values Φ+
i and Φ−

i
defined in (14) and (15). A summary of the results is given in the bottom part of Table 1.

The PV-scores ξi of Dutch parties tend to be higher than their respective traditional Banzhaf
or Shapley power measures βi and φi, and even the decisiveness measures Φ+

i and Φ−
i which

incorporate the same empirical estimate of P. In particular, the prediction value ascribes rather
substantial numbers also to small parties like D66, SGP, or Verdonk.

CDA CU D66 GL PvdA PvdD PVV SGP SP Verdonk VVD
CDA 1.000 0.267 0.263 0.483 0.237 -0.044 0.324 0.221 -0.026 -0.026 0.012

CU 0.267 1.000 0.631 0.348 0.601 0.015 0.178 0.459 0.094 0.094 0.158
D66 0.263 0.631 1.000 0.348 0.811 0.044 0.169 0.693 0.034 0.034 -0.008
GL 0.483 0.348 0.348 1.000 0.315 -0.003 0.171 0.259 0.019 0.019 0.068

PvdA 0.237 0.601 0.811 0.315 1.000 0.040 0.161 0.714 0.027 0.027 -0.003
PvdD -0.044 0.015 0.044 -0.003 0.040 1.000 0.198 0.171 0.536 0.536 0.389
PVV 0.324 0.178 0.169 0.171 0.161 0.198 1.000 0.203 0.263 0.263 0.285
SGP 0.221 0.459 0.693 0.259 0.714 0.171 0.203 1.000 0.110 0.110 0.025

SP -0.026 0.094 0.034 0.019 0.027 0.536 0.263 0.110 1.000 1.000 0.554
Verdonk -0.026 0.094 0.034 0.019 0.027 0.536 0.263 0.110 1.000 1.000 0.554

VVD 0.012 0.158 -0.008 0.068 -0.003 0.389 0.285 0.025 0.554 0.554 1.000

TABLE 2. Correlation coefficients for 2008–2010 votes in Dutch Parliament

This reflects specificities of the political situation in the Netherlands and that the PV picks up
corresponding correlations between the voting behavior of different parties. Varying majorities
at calls are quite common in the Dutch Parliament. The member parties of the government do
not necessarily vote the same way; some are frequently supported by smaller opposition parties.
The correlation coefficients reported in Table 2 indicate, for instance, that SGP and D66 quite
commonly voted the same way as CU and PvdA. Their PV numbers hence differ much less than
their seat shares.

Verdonk and SP constitute an extreme case in this respect. The former is commonly consid-
ered as right-wing, the latter as a left-extremist party; still both voted the same way at each call in
the data set (presumably having different reasons). Perfect correlation of their votes implies that
both have the same prediction value – despite SP having 25 seats and Verdonk but one: knowing
either’s vote in advance would have been equally valuable for predictive purposes. Measures
based on marginal contributions, in contrast, clearly favor SP over Verdonk (though less so if
the a posteriori correlation between SP’s and Verdonk’s votes is ignored). Interestingly, the GL
party has the second-highest prediction value: despite it not being in government and having
only the sixth-largest seat share, support by GL was a better predictor of a bill’s success than
support by any except the biggest party (CDA).

7. CONCLUDING REMARKS

Traditional semivalues like the Shapley or Banzhaf values and the prediction value provide two
qualitatively distinct perspectives on the importance of the members of a collective decision
body. One highlights the difference that an ad-hoc change of a given player i’s membership in
the coalition which eventually forms would make from an ex ante perspective; the other stresses
the difference that the change of a player’s presumed membership makes for one’s ex ante as-
sessment of realized worth. As the figures in Table 1 illustrate, both can differ widely in case



THE PREDICTION VALUE 15

players’ behavior exhibits interdependencies. But, as formalized by Theorem 2, they coincide in
case of statistical independence. The latter is presumed by the behavioral model underlying, e.g.,
the Banzhaf value, but incompatible with that underlying the Shapley value. For independent
individual voting decisions, the conditioning on different votes of player i adds no behavioral
information to the formal fact of i’s weight contribution to either the yes or no camp. Then
i’s informational importance and i’s voting power or influence – reflected by sensitivity of the
collective decision to a last-minute change of i’s behavior – are aligned.22

We note that the prediction value does not distinguish between correlation and causation in
cases of interdependence. For illustration, consider decisions by a weighted voting body in
which some player i has zero weight but all other players’ decisions are perfectly correlated
with that of i. Player i’s prediction value is then one irrespective of whether (i) players j 6= i
‘follow’ i and cast their weight as their supreme leader i would if he had any, (ii) i 6= k and all
players j 6= k follow a specific other player k, or (iii) all players debate the merit of a proposal
based on different initial inclinations and collective opinion dynamics converge to, for instance,
the majority inclination.23 Since knowing i’s decision – rather than i’s initial inclination – will
always fully reveal the realized outcome, we regard finding ξi = 1 in all three scenarios a
feature, not a flaw.

However, this example points to an interesting extension of the described “difference of con-
ditional expected values”-approach to measuring importance. Namely, start with a given descrip-
tion (N, v, P) of a decision body where P corresponds to, say, the Banzhaf uniform distribution
and augment it by the formal description of a social opinion formation process which defines
a mapping from players’ binary initial voting inclinations to a distribution over final ones after
social interaction. One can then capture a player i’s combined social and formal influence in the
decision body by answering the question: how much does knowing that i’s initial inclination
is in favor (or against) the given proposal modify the final outcome which is to be expected?
We conjecture that this approach actually has advantages over extending marginal contribution-
based analysis to social interaction,24 and plan to pursue this extension in future research.

22In the case of the Banzhaf value, coincidence between voter i’s influence as picked up by i’s average
marginal contribution and the informational effect of knowing i’s vote has been hinted at by Felsenthal
and Machover (1998, 3.2.12–15).

23See Grabisch and Rusinowska’s (2010) related work on possibilities to aggregate individual influ-
ence in command structures.

24See, for instance, the power scores derived from swings in societies with opinion leaders by van den
Brink et al. (2013).
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APPENDIX

Proof of Proposition 1. Anonymity and linearity of ξ are obvious from Definition 1. To prove
consistency, consider (N, v, P) ∈ PG and let i ∈ N be dependent in v. Let j ∈ N \ i and
S ⊆ N \ ij. Equations (12) and (24) imply that

P−i|j (S ∪ j) = P|j (S ∪ j) + P|j (S ∪ i ∪ j) (33)

and
P−i|¬j (S) = P|¬j (S) + P|¬j (S ∪ i) . (34)

By using the definition of v−i and invoking equality (33) one can verify that

P−i|j (S ∪ j) v−i (S ∪ j) = P|j (S ∪ i ∪ j) v (S ∪ i ∪ j) + P|j (S ∪ j) v (S ∪ j) . (35)

Similarly, by definition of v−i together with (34), we get

P−i|¬j (S) v−i (S) = P|¬j (S ∪ i) v (S ∪ i) + P|¬j (S) v (S) . (36)

One can then infer

ξj(N−i, v−i, P−i) =
∑

S⊆N\ij

{
P−i|j (S ∪ j) v−i (S ∪ j) − P−i|¬j (S) v−i (S)

}
=
∑

S⊆N\ij

[{
P|j (S ∪ i ∪ j) v (S ∪ i ∪ j) + P|j (S ∪ j) v (S ∪ j)

}
−
{
P|¬j (S ∪ i) v (S ∪ i) + P|¬j (S) v (S)

}]
=
∑
S⊆N\j

{
P|j (S ∪ j) v (S ∪ j) − P|¬j (S) v (S)

}
= ξj(N, v, P),

where the second equality uses (35) and (36), and the third one follows by shifting the corre-
sponding terms from inside the square brackets to the outer summation.

Proof of Theorem 1. The proof proceeds in three steps. First, in Lemma 2 we prove for |N| = 2
that linearity and consistency imply that an extended value is determined by unanimity games.
Second, we generalize this to all probabilistic games in Lemma 3. Finally, we show that the
full control property and IDDP characterize the PV for 2-player probabilistic games and hence
probabilistic games in general.

Lemma 2. Consider an extended valueϕ that is linear on the space of all 2-player probabilistic
games and consistent. For any set N with |N| = 2, the mapping (N, v, P) 7→ ϕ(N, v, P) is fully
determined by the numbers

xij := ϕi(N,uj, P) for i, j ∈ N. (37)

Proof. Let P be a fixed probability distribution on 2N with N = {i, j}. The set of unanimity
games {ui, uj, uij} forms a basis for the space of all TU games on N. In particular, for any
(N, v) ∈ GN there are constants αi, αj, αij such that

v ≡ αiui + αjuj + αijuij. (38)
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And thus, for arbitrary P and i ∈ N, ϕ’s linearity implies

ϕi(N, v, P) = αiϕi(N,ui, P)︸ ︷︷ ︸
:=xii

+αjϕi(N,uj, P)︸ ︷︷ ︸
:=xij

+αijϕi(N,uij, P)︸ ︷︷ ︸
:=xi,ij

. (39)

We need to show that xi,ij and xj,ij are fully determined by xii and xij.
To see this, notice first that both players are dependent in (N,uij, P). So we may consider

the reduced game obtained by j’s removal, which involves N−j = {i} and

P−j(∅) = P(∅) + P(j), P−j(i) = P(i) + P(ij),

(uij)−j(∅) = 0, (uij)−j(i) =

{
P(ij)

P(i)+P(ij) if P(i) + P(ij) > 0,

0 otherwise.
(40)

In case P(i) + P(ij) > 0, we have

ϕi(N,uij, P) = ϕi
(
{i},

P(ij)
P(i)+P(ij) · ui, P−j

)
=

P(ij)
P(i)+P(ij) ·ϕi({i}, ui, P−j)

=
P(ij)

P(i)+P(ij) ·ϕi(N,ui, P) =
P(ij)

P(i)+P(ij) · xii, (41)

where the first equality invokes consistency, the second linearity, and the third one exploits that
({i}, ui, P−j) is the reduction of (N,ui, P) by player j and again consistency. When P(i) =
P(ij) = 0 we have ϕi(N,uij, P) = 0 because in this case (uij)−j({i}) = 0 by Definition 4,
so that

(
uij
)
−j

is the all-zero game 0 in that case. Consistency requires ϕi(N,uij, P) =

ϕi({i}, (uij)−j, P−j) = ϕi({i}, 0, P−j) = 0 due to linearity.
In summary,

xi,ij =

{
P(ij)

P(i)+P(ij) · xii if P(i) + P(ij) > 0,

0 otherwise.
(42)

And in a similar fashion one obtains

xj,ij =

{
P(ij)

P(j)+P(ij) · xjj if P(j) + (Pij) > 0,

0 otherwise.
(43)

�

For any v ≡ αiui + αjuj + αijuij we have

ϕi(N, v, P) =

{
αj · xij +

(
αi +

αij·P(ij)
P(i)+P(ij)

)
· xii if P(i) + P(ij) > 0,

αj · xij + αi · xii otherwise
(44)

and an analogous expression for ϕj(N, v, P). This finding can be generalized from just two
players to arbitrary N:

Lemma 3. Let ϕ be a consistent and linear extended value. Then the mapping (N, v, P) 7→
ϕ(N, v, P) is fully specified by the parameters in (37).

Proof. Using the n-player unanimity games as a basis for PGN one can always write

v ≡
∑

∅(T⊆N
αTuT . (45)
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Letting i ∈ N be an arbitrary but fixed player, we will use induction on n in order to prove the
following

Claim: There exist βij, depending on the αT and P, such that

ϕi(N, v, P) =

n∑
j=1

βijxij where xij := ϕi(N,uj, P). (46)

The claim is obvious for a single player and was proven for |N| = 2 in Lemma 2. In view of
linearity, it suffices to prove the statement for unanimity games uT , where nothing needs to be
shown when the cardinality of T is one. So we consider |N| > 3, |T | > 2 and assume that the
statement is true for all player setsN of cardinality n− 1. Let j ∈ N \ i be a player, which must
be dependent in uT because |T | > 2. Now we consider the reduced game (N−j, (uT )−j, P−j).
From consistency we conclude

ϕi(N,uT , P) = ϕi(N−j, (uT )−j, P−j).

Applying the induction hypothesis implies the existence of β′ik, which depend on P−j and hence
on P, such that

ϕi(N,uT , P) =

n∑
k=1,k6=j

β′ikϕi(N−j, uk, P−j).

Since (uk)−j = uk the reduced game of (N,uk, P) is given by (N−j, uk, P−j) for all 1 6 k 6
n with j 6= k. Inserting ϕi(N−j, uk, P−j) = ϕi(N,uk, P) = xik then proves the claim . �

We remark that the coefficients βij referred to in the above proof get quite complicated for
increasing n. In the following we will use only the fact that they are well-defined given v and P.

Proof of Theorem 1. To complete the proof we now show how the values xii = ϕi(N,ui, P)
and xij = ϕi(N,uj, P) can be computed from the corresponding values for the player set
N′ = {i, j}. Since (ui)−j = ui for all i 6= j we can recursively conclude from consistency

ϕi(N,ui, P) = ϕi({i, j}, ui, P
?) and (47)

ϕi(N,uj, P) = ϕi({i, j}, uj, P
?), (48)

where
P?(S) =

∑
T⊆N\ij

P(S ∪ T) for any S ⊆ {i, j}. (49)

Using equation (49) and similarly defining

P′(S) =
∑
T⊆N\i

P(S ∪ T) for any S ⊆ {i}, (50)

we conclude ϕi({i}, ui, P′) = ϕi({i, j}, ui, P
?) from consistency. Thus, the full control prop-

erty, in connection with consistency and linearity, implies xii = 1 for all player setsN (contain-
ing player i). Ifϕ satisfies IDDP the values of xij are determined, and henceϕ is determined on
the class of 2-player probabilistic games. Then ϕ ≡ ξ follows from Lemma 3. Finally note that
the full control property and IDDP do not depend on the labeling of the players, which implies
anonymity.
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Proof of Lemma 1.
(i) Linearity is inherited from the expected value EP|i.
To see consistency we first verify that EP−j|i

(
[uS]−j

)
= EP|i (uS) for any probability measure

P. If
∑
U⊆N\j,
i∈U

P−j(U) = 0, then both sides of the equation are equal to zero. So, we may

assume
∑
U⊆N\j,
i∈U

P−j(U) > 0 in the following. For the reduced game G−j = (N−j, v−j, P−j)

we have

EP−j|i

[
[uS]−j

]
=

∑
T⊆N\j,
i∈T

P−j|i(T) · [uS]−j(T) =
∑

T⊆N\j,
i∈T

P−j(T)∑
U⊆N\j,
i∈U

P−j(U)
· [uS]−j(T)

=
1∑

U⊆N\j,
i∈U

P−j(U)

∑
T⊆N\j,
i∈T

P−j(T) · [uS]−j(T)

=
1∑

U⊆N,
i∈U

P(U)

∑
T⊆N\j,
i∈T

P−j(T) · [uS]−j(T)

=
1∑

U⊆N,
i∈U

P(U)

∑
T⊆N\j
i∈T

{P(T) + P(T ∪ j)} · [uS]−j(T).

Inserting (25) provides

EP−j|i

[
[uS]−j

]
=

1∑
U⊆N,
i∈U

P(U)

∑
T⊆N\j,
i∈T

{
P(T) · uS(T) + P(T ∪ j) · uS(T ∪ j)

}

=
1∑

U⊆N,
i∈U

P(U)

∑
i∈T⊆N

P(T) · uS(T) = EP|i (uS) .

Note that v−j =
∑
S⊆N αS · [uS]−j and hence

ϕ1i (N−j, v−j, P−j) =
∑

S⊆N\j,
i∈S

αS · EP−j|i

(
[uS]−j

)
=
∑

S⊆N\j,
i∈S

αS · EP|i (uS)

= ϕ1i (N, v, P)

which confirms consistency of ϕ1.
Full control follows from ϕ1i ({i}, ui, P) = EP|i[ui(S)] = P|i({i}). This is 1 if P({i}) > 0 and

otherwise 0 by the definition of P|i.
In remains to be shown that ϕ1 does not satisfy IDDP . For the unanimity game uj note that

uj =
∑
S⊆N αS · uS provides

αS =

{
1 for S = {j} ,

0 otherwise.

However, the summation in (27) is over all S with i ∈ S such that

ϕ1i ({i, j}, uj, P) = 0 (51)
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in contradiction to (26).

(ii) ϕ2 inherits linearity and consistency from ξ and ϕ1. Inserting (51) into (28) provides

ϕ2i ({i, j}, uj, P) = ξi({i, j}, uj, P)

such that ϕ2i inherits IDDP from ξi. As both ξ and ϕ1 satisfy full control we get

ϕ2i ({i}, ui, P) = 0,

in contradiction to Definition 7.

(iii) Linearity is obvious. For |N| 6 2 the extended value ϕ3 is identical to the PV and the
latter satisfies full control and IDDP . For a counterexample to consistency consider a game
G−j = (N, v, P) with |N| = 3 and perfect correlation P(N) = 1/2 = P(∅). Here,

ϕ3i (N, v, P) = 0 for all i ∈ N. (52)

However, for the reduced game G−j = (N−j, v−j, P−j) we get

N−j = N \ j,

P−j(S) = P(S) + P(S ∪ j) for all S ⊆ N \ j

=

{
1/2 for S ∈ {N\j,∅} ,

0 otherwise,

v−j (S) =

{
v(N) for S = N\j,

0 otherwise.

For ϕ3 follows

ϕ3i (N−j, v−j, P−j) = v(N) − v(∅) = v(N) for all i ∈ N
which contradicts (52).

(iv) Consider the reduced game G−j = (N−j, v−j, P−j). PV is consistent and therefore

ξi(N−j, (uS)−j, P−j) = ξi(N,uS, P) for all i ∈ N \ j.

We conclude

ϕ4i (N−j, v−j, P−j) =
∑

S⊆N,αS 6=0
ξi(N−j, (uS)−j, P−j)

=
∑

S⊆N,αS 6=0
ξi(N,uS, P) = ϕ

4
i (N, v, P) for all i ∈ N \ j

which confirms consistency of ϕ4i .
Full control and IDDP follows from ϕ4i ({i}, ui, P) = ξi({i}, ui, P) and ϕ4i ({i, j}, uj, P) =
ξi({i, j}, uj, P).
To verify that ϕ4i is not linear put w =

∑
S⊆N

βS · uS.

ϕ4i (N, v+w,P) =
∑

S⊆N,αS+βS 6=0
ξi(N,uS, P)
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which is in general not equal to∑
S⊆N,αS 6=0

ξi(N,uS, P) +
∑

S⊆N,βS 6=0
ξi(N,uS, P).

Proof of Theorem 2. The proof is based on three insights, stated in Lemmas 4–6.

Lemma 4. From Ψ(·, Q) ≡ ξ(·, P) follows Qi(S) = P|i(S) for all {i} ⊆ S ⊆ N.

Proof. For an arbitrary subset {i} ⊆ S ⊆ N we consider the unanimity game uS and obtain the
formulas

ξi(uS, P) =
∑
T3i

uS(T) · P|i(T) −
∑
T 63i

uS(T) · P|¬i(T) =
∑
T :S⊆T

P|i(T)

and
Ψi(uS, Q) =

∑
{i}⊆T⊆N

Qi(T)
[
uS(T) − uS(T\i)

]
=
∑
T :S⊆T

Qi(T).

Now we prove the proposed statement by induction on the subsets S in decreasing order of their
cardinalities using the assumption ξi(uS, P) = Ψi(uS, Q). For the induction start S = N we
have P|i(N) = Qi(N). Using the induction hypothesis for all S′ ⊆ N with |S′| > |S| yields
P|i(S) = Qi(S). �

Lemma 5. From Ψ(·, Q) ≡ ξ(·, P) follows P|i(U) = P|¬i(U\i) for all {i} ⊆ U ⊆ N with
|U| > 2.

Proof. We set U = N\S∪ i so that we have to prove P|i(N\S∪ i) = P|¬i(N\S) for all subsets
{i} ⊆ S ( N.

For fixed S we consider the unanimity game uN\S and obtain the formulas

ξi(uN\S, P) =
∑
T3i

uN\S(T) · P|i(T) −
∑
T 63i

uN\S(T) · P|¬i(T)

=
∑

T : N\S⊆T⊆N\{i}

(
P|i(T ∪ i) − P|¬i(T)

)
and

Ψi(uN\S, Q) =
∑
T3i

Qi(T)
[
uN\S(T) − uN\S(T\i)

]
= 0.

Now we prove the proposed statement by induction on the subsets S in increasing order of
their cardinalities using the assumption ξi(uS, P) = Ψ(uS, Q). For the induction start S = {i}
we have P|i(N) − P|¬i(N\i) = 0, which is equivalent to P|i(N) = P|¬i(N\{i}). Using the
induction hypothesis for all S′ ⊆ N with |S′| < |S| yields P|i(N\S ∪ i) = P|¬i(N\S). �

Put pi :=
∑
T3i P(T) ∈ [0, 1] for all i ∈ N. Whenever pi > 0 we have P|i(S) = P(S)

pi
for all

{i} ⊆ S ⊆ N and P|i(S) = 0 in all other cases. The next lemma excludes the case pi = 1 for at
least two players.

Lemma 6. If Ψ(·, Q) ≡ ξ(·, P) and if there exists an index i ∈ N with pi = 1, then n = 1.
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Proof. From pi =
∑
T3i P(T) = 1 we conclude P(S) = 0 for all S ⊆ N\i. Thus we have

P|i(T) = 0 for all T 3 i with |T | > 2 due to Lemma 5. This yields P({i}) = Qi({i}) = 1 and
Qj(S) = 0 for all S 3 j, where (S, j) 6= ({i}, i), and all j ∈ N due to Lemma 4. For each j ∈ N\i
we then have

∑
S3jQj(S) = 0 6= 1 – a contradiction. �

Proof of Theorem 2. From Lemma 6 we conclude

0 6 pi :=
∑
T3i

P(T) < 1

for all i ∈ N. If pi = 0 for an index i ∈ N, then we have Qi(S) = 0 due to Lemma 4, which
contradicts the definition of the Qi(S). Thus we have 0 < pi < 1. Later on it will turn out that
indeed we can choose p̃i = pi.

We have
P(S) =

pi
1− pi

· P(S\i)

for all S 3 i with |S| > 2 due to Lemma 5 and pi > 0. Thus inductively we obtain

P(S) =
∏
j∈S\i

pj

1− pj
· P({i})

for all i ∈ N and all subsets S 3 i of N.
Inserting the previous equations into pi =

∑
S3i

P(S) yields

pi = P({i}) ·
∑
S 63i

∏
j∈S

pj

1− pj
= P({i}) ·

∏
j∈N\i

(
pj

1− pj
+ 1

)
= P({i}) ·

∏
j∈N\i

1

1− pj
.

Thus we have
P({i}) = pi ·

∏
j∈N\i

(1− pj),

which then yields

P(S) =
∏
j∈S

pj ·
∏
j∈N\S

(1− pj) (53)

for all ∅ 6= S ⊆ N. By using
∑
S⊆N P(S) = 1 we conclude that equation (53) is also valid for

the empty set and thus for all subsets of N.
Lemma 4 and a short calculation gives also the first formula of the proposed statement.

To verify that the converse holds as well let 0 < pi < 1 be given for all i ∈ N and define

P(S) =
∏
j∈S

pj ·
∏
j∈N\S

(
1− pj

)
,

i.e., P is a product measure. Next set

Qi(S ∪ i) = P|i(S ∪ i) =
∏
j∈S

pj ·
∏

j∈N\(S∪i)

(
1− pj

)
,
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for i ∈ N\S, i.e. the Qi(S ∪ i) derive from the same product measure. We can easily verify
P|i(S) = P|¬i(S\i) for all S 3 i and all i ∈ N. Inserting this into the definition of the prediction
value provides ξ(·, P) = Ψ(·, Q).

REFERENCES

Aumann, R. J. (1987). Game Theory. In J. Eatwell, M. Milgate and P. Newman (Eds.), The New
Palgrave: A Dictionary of Economics, Volume 2. London: Macmillan.

Calvo, E. and J. C. Santos (2000). Weighted weak semivalues. International Journal of Game
Theory 29(1), 1–9.

Carreras, F. and J. Freixas (2008). On ordinal equivalence of power measures given by regular
semivalues. Mathematical Social Sciences 55(2), 221–234.

Carreras, F. and M. Puente (2012). Symmetric coalitional binomial semivalues. Group Decision
and Negotiation 21(5), 637–662.

Carreras, F. and M. Puente (2015a). Multinomial probabilistic values. Group Decision and Ne-
gotiation 24(6), 981–991.

Carreras, F. and M. Puente (2015b). Coalitional multinomial probabilistic values. European
Journal of Operational Research 245(1), 236–246.

Casajus, A. (2012). Amalgamating players, symmetry, and the Banzhaf value. International
Journal of Game Theory 41(3), 497–515.

DeGroot, M. H. (1974). Reaching a consensus. Journal of the American Statistical Associa-
tion 69(345), 118–121.
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