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Abstract
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in that preference polarization along constituency lines quickly calls for a Shapley value-based
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I. Introduction

In decision-making bodies with a divisional or regional structure, the sizes or voting
weights of different delegations commonly vary in the numbers of represented
constituents. How they do so varies, too. In the US Electoral College, for instance,
each state has two votes in addition to a number which is proportional to population
size. California and Wyoming with around 11.9% and 0.2% of the US population thus
end up holding around 10.2% and 0.6% of votes on the US President. In contrast, the
most and least populous member states of the EU – Germany and Malta – currently
have about 8.2% and 0.9% of votes in the Council of the European Union but comprise
15.9% and 0.1% of the EU population; the respective mapping from population size to
voting weight is, very roughly, a square root function.1 Delegates in other decision-
making bodies, such as the Senate of Canada, the Assembly of the African Union, the
Governing Council of the European Central Bank and many a university senate or
council of a multi-branch NGO, have voting weights that are yet more concave in the
number of represented individuals, or even flat.

This paper analyzes democratic fairness of different voting weight arrangements.
Individuals choose delegates in disjoint constituencies (bottom tier) and these rep-
resentatives take collective decisions in an assembly (top tier). We investigate a
practical question: which mapping – possibly linear, possibly strictly concave or
constant – should determine the top-tier voting weights of delegates from differently
sized constituencies? Barberà and Jackson (2006) and Koriyama et al. (2013), among
others, have studied this question for binary policy spaces, with the objective to
maximize a utilitarian welfare function. We focus on the basic democratic principle of
‘one person, one vote’. Our corresponding conception of equitable institutional design
is that all bottom-tier voters should wield equal influence on collective decisions – at
least under stylized ideal conditions behind a constitutional veil of ignorance.

The major difference to the existing literature is that agents face an interval of
policy alternatives, rather than binary ones. This opens up the analysis to a collection
of economic issues (such as tax rates, monetary policy, spending on climate change
mitigation) that otherwise would not be covered. We assume that voter preferences are
single-peaked. Bargaining, political competition and other types of interaction at the
constituency level can then be captured in reduced form by considering the respective
median voter. Specifically, the realized median preference of each constituency is
presumed to act as its representative. The representatives then use a weighted voting
rule with a 50% majority threshold and adopt the Condorcet winner among their ideal
points, i.e., the policy which beats all alternatives in a pair-wise vote. This coincides,

1A least squares power-law regression of EU Council voting weights wi on population sizes ni

results in wi = c ·n0.48
i with R2

≈ 0.95. The current Council voting rules involve two other but essentially
negligible criteria, and will be changed in 2017 into a more proportional system.
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formally, with the weighted median in the assembly.
The distributions of voter preferences and the delegates’ voting weights jointly

determine how often a given constituency is pivotal – that is, how often its most
preferred policy is the assembly’s weighted median. Our design objective calls for
weights to be such that each constituency’s probability of being pivotal is proportional
to its population size, making the a priori assumption that voter preferences are all
identically distributed as well as mutually independent across constituencies.

Proportionality of pivot probabilities at the top tier is linked to equal individual
influence in two ways. The first is to view an individual citizen’s influence as his or her
chances to induce a collective outcome in accordance with the personal preference’s
ideal point: that is, to be a median voter of the decisive constituency. The probability
of being the local median is inversely proportional to the constituency’s population
size. If this is balanced by proportional pivot probabilities for the representatives, the
democratic playing field is level.

Alternatively, one can identify a constituent’s influence with the anticipated effect
of taking part in the decision making process. Even if the constituency’s preferences
coincide with those of only one individual, every constituency member affects who this
is. If, say, some left-wing voter dropped out – so an ideal point to the left of the median
is deleted from the constituency’s preference distribution – then the median’s location
would shift to the right. The expected size of such shift and hence the influence
associated with democratic participation are inversely proportional to constituency
size. Again, proportionality is required in order to avoid bias.

The relation of heterogeneity within each constituency and heterogeneity across con-
stituencies turns out to be the critical parameter for a fair weight allocation, because it
determines how the probability distributions of the constituency medians vary with
population sizes. A greater number of preference draws generally reduces the variance
of the resulting median. The representative of a large constituency will therefore
frequently hold a central political position, at least if all preferences are independent.
This raises the odds of being the assembly’s median compared to delegates from small
constituencies, who are more often outliers. In view of this size-related advantage
of large constituencies, strictly concave or ‘degressively proportional’ weights can be
enough to induce proportionality of pivot probabilities in the assembly. However,
positive correlation within the constituencies – corresponding to local fixed effects
and reflecting heterogeneity across constituencies – slows the reaction of variance to
local population size. If, consequently, representatives of large constituencies have
little or no locational advantage in the assembly, they need more progressive margins
for their voting weights.

Square root and linear weighting rules emerge from these considerations in
important benchmark cases. The former is advisable if all voter preferences are
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mutually independent (Corollary 1), while the considered democratic ideal calls for
linear allocations when there is sufficient heterogeneity across constituencies, i.e., if
voters are polarized along constituency lines (Corollary 2). These conclusions follow
from new limit results on committee decisions on intervals which may also find other
applications (Theorems 1 and 2).

Of course, an individual’s probability of being pivotal and also the expected policy
effects of participation will be very small for most real-life population figures.2 In
relative terms, however, these probabilities can differ widely across constituencies
when weights are chosen arbitrarily. They should not, first, as a matter of democratic
principle. Second, though we make no cardinal assumptions in the analysis, large
issues can be at stake. The associated variation of expected utilities may hence be
significant. A compelling explanation of why people vote at all is that they care about
the general good, i.e., they have social preferences. If election of candidate X rather
than Y, or a policy shift to the left or right, would raise quality of life by the equivalent of
$100 for ten million fellow citizens in the eyes of a given, socially-minded individual,
then tiny prospects of affecting the outcome become billion-dollar lotteries, whose
allocation matters (see Edlin et al. 2007). Finally, variation of pivot probabilities makes
it profitable for politicians to concentrate their attention and resources, i.e., target
policies to states, districts and voter groups who have a high chance of being pivotal.
A considerable empirical literature documents how inequality in political influence
produces inequality in public expenditures.3 There is also evidence that voters who
believe their participation to be pivotal turn out more likely (see, for example, Duffy
and Tavits 2008) and these turnout rates affect policy (compare Mueller and Stratmann
2003 or Fumagalli and Narciso 2012).

The weighting implications of ensuring an equal say for all voters in a two-
tier system under normatively motivated a priori assumptions were first formally
considered by Lionel S. Penrose in 1946.4 The institutional design of a successor to the
League of Nations – today’s UNO – was then being discussed. Penrose (1946) argued
that the most intuitive solution to the democratic weight allocation problem, i.e.,
weights proportional to constituency sizes, ignores “elementary statistics of majority

2Combining US voter figures with poll data, Gelman et al. (2012) estimated chances for a single
vote being decisive in the 2008 presidential elections as about 1 in 60 million, but up to 1 in 10 million in
some small and midsize states who were near the national median politically. Persuading 500 people
in, e.g., New Mexico to change their votes would have provided a 1 in 6,000 chance of swinging the
election ex ante.

3For instance, see Atlas et al. (1995) and Knight (2008) on US federal spending, Ansolabehere et al.
(2002) on spending by US states, and Rodden (2002) for a study of the EU Council. On a related note,
Strömberg (2008) has shown pivot considerations to be an important determinant for the allocation of
campaign resources in US presidential elections.

4Informal investigations date back to anti-federalist writings by Luther Martin, a delegate from
Maryland to the Constitutional Convention in Philadelphia in 1787. See Riker (1986).
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voting”. Namely, if there are only two policy alternatives (‘yes’ or ‘no’) and all
individual decisions are statistically independent and equiprobable then top-tier voting
weights need to be such that the induced pivot probabilities of the delegates are
proportional to the square root of represented population sizes. The corresponding
suggestion is known as Penrose’s square root rule.

This rule has provided a benchmark for a long list of applied studies on voting
power in the US, EU, or IMF (see Felsenthal and Machover 2004; Grofman and Feld
2005; Fidrmuc et al. 2009; Leech and Leech 2009; Miller 2009, 2012, and the references
therein). Politicians and diplomats may not care about Penrose’s reasoning as such,
but they have invoked his suggestion when it has fitted their interests.5

The special roles of square root and linear weight allocations have been confirmed,
qualified, and disputed in numerous investigations of two-tier voting systems, both
empirically (see Gelman et al. 2002, 2004) and theoretically. Besides the a priori
influence of voters (Chamberlain and Rothschild 1981; Felsenthal and Machover 1998;
Laruelle and Valenciano 2008b; Kaniovski 2008), utilitarian welfare maximization
has played a particularly prominent role (e.g., Barberà and Jackson 2006; Beisbart
and Bovens 2007; Laruelle and Valenciano 2008b; Koriyama et al. 2013). Moreover,
avoidance of majoritarian paradoxes such as in the US presidential elections of 2000
has featured as desirable ideal (Felsenthal and Machover 1999; Kirsch 2007; Feix et al.
2008).

This literature has made several departures from Penrose’s original assumptions
but has focused almost entirely on binary decisions.6 Dichotomous options provide
no scope for negotiation and bargaining. This may be suited to political decisions
between just two exogenously available candidates, or perhaps on whether there is to
be taxation, regulation, or aid. But it does not fit competition between many policies
and economic decisions on levels, such as rates of taxation or their progressiveness, the
intensity or scope of regulation, aid’s scale or means test requirements. We therefore
analyze the equitable choice of voting weights for a richer set of alternatives. Though
the relevant statistics are entirely different (and no longer so elementary) the design
implications differ, to our own surprise, only little. Our analysis reinforces and
corroborates an increasingly robust pattern in the literature: as originally argued
by Penrose (1946), ex ante independent and identical voters require weight allocations
based on the square roots of population sizes. But sufficient dissimilarity between

5A particularly notorious case involved the then Polish president and prime minister in the EU’s
negotiations of the Treaty of Lisbon. See, e.g., The Economist (2007, June 14th).

6We are aware of the following exceptions only: Laruelle and Valenciano (2008a) suggest a “neutral”
top-tier voting rule when policy alternatives give rise to a Nash bargaining problem. Le Breton et al.
(2012) investigate fair voting weights in case of the division of a transferable surplus, i.e., for a simplex
of policy alternatives. Maaser and Napel (2007, 2012, 2014) report Monte Carlo simulation results for
influence-based, majoritarian, and welfarist objective functions in the median voter environment which
we will here investigate analytically.
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constituencies renders most people’s intuition correct – ‘one person, one vote’ calls for
plain proportionality.

The remainder of the paper is organized as follows. In Section II, we spell out
our stylized model of two-tier decision making and formalize the institutional design
problem. The main result for simple majority rule and a large number of constituencies
is presented in Section III, together with its voting weight implications in case all
preference draws are independent. We explore different majority requirements and
the effect of adding heterogeneity across constituencies to that within in Section IV.
We conclude in Section V and provide proofs in a mathematical appendix.

II. Model and Design Problem

A. Agents and Preferences

Consider a partition Cm = {C1, . . . ,Cm} of a large number n of voters into m < n
disjoint constituencies with ni = |Ci| > 0 members each. The preferences of any voter
l ∈ {1, . . . ,n} =

⋃
i Ci are assumed to be single-peaked over a convex one-dimensional

policy space X ⊆ R, i.e., a finite or infinite real interval. Voter l’s ideal point νl is conceived
of as the realization of a continuous random variable. A given profile (ν1, . . . , νn)
of ideal points could reflect voter preferences in an abstract left–right spectrum or
regarding a specific one-dimensional variable such as the location or scale of a public
good, an exemption threshold for regulation, a transfer level, etc.

We assume throughout our analysis that voter ideal points are a priori identically
distributed. Moreover, it is assumed that ideal points are mutually independent across
constituencies. We do, however, allow for a specific form of ideal points being correlated
within each constituency.

In particular, we conceive of the ideal point νl of any voter l ∈ Ci as the sum

νl = µi + εl (1)

of a constituency-specific shock µi which has distribution H and a voter-specific shock
εl with distribution G and continuous density g. Variables ε1, . . . , εn and µ1, . . . , µm are
all mutually independent. The variance of G, σ2

G < ∞, can be interpreted as a measure
of heterogeneity within each constituency, reflecting natural variation of political and
economic preferences. If distribution H of µi is non-degenerate, it reflects a common
attitude component of preferences within each constituency. H’s variance σ2

H < ∞

is a straightforward measure of heterogeneity across constituencies: even though it is
assumed that preferences in all constituencies vary between left–right, high tax–low
tax, etc. in a similar manner, the locations of the respective ranges of opinion can differ
between constituencies from an interim perspective.
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A priori, as G and H are the same for all voters l and constituencies Ci, ideal points
are distributed identically. The i.i.d. case of σ2

H = 0 in which they are also independent
is an important benchmark. However, constituencies differ in nothing but size a priori
also if σ2

H > 0: νl and νk are correlated with the same coefficient σ2
H/(σ

2
H +σ2

G) whenever
l, k ∈ Ci, for every constituency Ci ∈ C

m.

B. Two-Tier Median Voter Model

A collective decision x∗ ∈ X on the issue at hand is taken by an assembly of repre-
sentatives Rm which consists of one representative from each of the m constituencies.
Without committing to any particular procedure for within-constituency preference
aggregation – such as bargaining, electoral competition, or a central mechanism –
it will be assumed that preferences of Ci’s representative coincide with those of its
respective median voter, i.e., the location of the ideal point of representative i is

λi ≡ median {νl : l ∈ Ci}. (2)

This leaves aside agency problems and other reasons for why the preferences of a
constituency’s representative might not be congruent or at least sensitive to its median
voter.7

In the top-tier assemblyRm, constituencyCi has voting weight wi ≥ 0. Any coalition
S ⊆ {1, . . . ,m} of representatives which achieves a combined weight

∑
j∈S w j above

qm
≡

1
2

m∑
j=1

w j, (3)

i.e., which has a simple majority of total weight, is winning and can pass proposals to
implement some policy x ∈ X. This voting rule is denoted by [qm; w1, . . . ,wm].

Now consider the random permutation of {1, . . . ,m} that makes λk : m the k-th
leftmost ideal point among the representatives for any realization of λ1, . . . , λm. That
is, λk : m is their k-th order statistic. We will disregard the zero probability events of two
or more constituencies having identical ideal points and define the random variable
P by

P ≡ min
{
j ∈ {1, . . . ,m} :

j∑
k=1

wk:m > qm
}
. (4)

The ideal point λP : m of representative P : m cannot be beaten by any alternative x ∈ X
in a pairwise vote, i.e., it is in the core of the voting game defined by ideal points

7See, e.g., Gerber and Lewis (2004) for empirical evidence on how district median voters and partisan
pressures jointly explain legislator preferences, and for a short discussion of the related theoretical
literature. We remark that Theorems 1 and 2 below will not require identity (2) to hold.

6



λ1, . . . , λm, weights w1, . . . ,wm and quota qm. We assume that the policy x∗ agreed
by Rm lies in the core. Whenever that is single-valued, λP : m actually beats every
other alternative x ∈ X and is the so-called Condorcet winner in Rm. In order to avoid
inessential case distinctions, we assume thatRm agrees on λP : m also in the non-generic
and knife-edge cases of the entire interval [λP−1: m, λP : m] being majority-undominated,
i.e., the collective choice equals8

x∗ ≡ λP : m. (5)

Representative P : m will be referred to as either the pivotal representative or the weighted
median of Rm. Banks and Duggan (2000) and Cho and Duggan (2009) provide
equilibrium analysis of non-cooperative bargaining which supports policy outcomes
inside or close to the core. Note that for x∗ determined in this way, no constituency’s
median voter has an incentive to choose a representative whose ideal point differs
from her own one, that is, to misrepresent her preferences (cf. Moulin 1980; Nehring
and Puppe 2007).

C. Influence and Equal Democratic Representation

Individuals differ only with respect to the sizes of their constituencies a priori; hence
the voting weights which are allocated to their representatives should not create a
disadvantage for members of large constituencies, nor for those of any other size. Our
corresponding objective is to implement the influence aspect of the ‘one person, one
vote’ principle. More precisely, given a partition Cm = {C1, . . . ,Cm} of n voters into
constituencies and distributions G and H which describe heterogeneity of individual
preferences within and across constituencies, we would like to allocate voting weights
w1, . . . ,wm such that each voter a priori has equal influence on the collective decision x∗ ∈ X.

There are two complementing ways of operationalizing a voter’s influence on
x∗. They extend the classical approach in the analysis of binary elections, where an
individual l is influential if the election is tied without l’s vote (or one vote away from
a tie). In that case, voter l is decisive in two senses: (1) the election outcome coincides
with l’s vote and is sensitive to it, i.e., a change in l’s vote would change the outcome;
(2) given the decisions of all others, individual l’s turnout matters, i.e., it makes a
difference to the outcome whether l votes or not (at least with a positive probability
which depends on tie-breaking). Direct analogues in our continuous world are that (1’)
x∗ coincides (approximately) with l’s ideal point and idiosyncratic shifts of νl translate
into shifts of x∗, i.e., ∂x∗/∂νl > 0; and (2’) whether l expresses her preferences or not,
i.e., whether ideal point νl is incorporated into the local median, affects x∗’s location.

In contrast to the binary world, influence in the sensitivity and in the turnout

8A sufficient condition for the core to be single-valued is that the vector of weights satisfies
∑

j∈S w j ,

qm for each S ⊆ {1, . . . ,m}.
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senses are associated with different events. That voter l ∈ Ci is influential in the
sensitivity sense requires that l is Ci’s median voter for an odd population size ni.
By our assumptions – ideal points νl and νk are identically distributed and at least
conditionally independent if l, k ∈ Ci – the probability of l being the local median is
1/ni, i.e., inversely proportional to constituency size. Conditioning on the intersection
of this event and that of Ci’s representative being pivotal at the top tier, we have
∂x∗/∂νl = 1. Since events {νl = λi} and {x∗ = λi} are independent,9 we can quantify
a priori influence of voter l ∈ Ci as

E
[
∂x∗/∂νl

]
=
πi(Rm)

ni
(6)

where
πi(Rm) ≡ Pr(P : m = i) (7)

denotes the probability of Ci’s representative being the assembly’s weighted median.
The same follows for an even number ni.10 Equal influence on collective decisions
hence demands that πi(Rm) is proportional to ni.

Influence in the turnout sense does not require l to be a median voter in her
constituency because every member of Ci affects the constituency’s median position
by participating. Dropping a voter from sample {νl : l ∈ Ci} who is to the left of λi

would give rise to a new median position λ′i > λi on the right; dropping one on the
right shifts λi left. (If the median voter herself fails to participate, λi is replaced by
the midpoint λ′i ≷ λi of its neighbors.) The probability of a given individual l ∈ Ci

having some influence in this sense – and thus a reason to vote – is πi(Rm). However,
the extent of influence (conditional on pivotality of Ci in Rm) depends on constituency
size. To see this, suppose all ideal points are independent and distributed uniformly
on [0, 1]. Then the expected location of the k-th left-most position in Ci is k/(ni + 1).
Ci’s expected median position is E[λi] = 1/2, and for an even ni would be replaced by
E[λ′i] = (ni/2 + 1)/(ni + 1) > 1/2 if a left-wing voter dropped out. The shift’s expected
size is E[λ′i − λi] = 1/[2(ni + 1)], i.e., it is about halved if population is doubled.

The effects of adding (or deleting) an observation to a given sample are rigorously
studied in mathematical statistics, in the context of robust estimation. There, the
influence function of the median functional has been established to be

ψ(νl) =
sign(νl

−M)
2 f (M)

(8)

9The first event only entails information about the identity of Ci’s median, not its location.
10The median position λi then is the midpoint of the ideal points of Ci’s two middlemost voters. The

probability of l being one of them is 2/ni, and then ∂x∗/∂νl = 1
2 if Ci’s representative is pivotal. This

yields E[∂x∗/∂νl] = πi(Rm)/ni again.
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where f denotes the density of νl’s distribution function F, and M is F’s median. It can
be used in order to write

λi = M +
1
ni

∑
l∈Ci

ψ(νl) + Ri (9)

with a residual term Ri which vanishes in probability as ni → ∞.11 That is, we may –
with only small error – conceive of Ci’s median position as the result of starting
at the common theoretical median M and then doing ni equidistant jumps of size
1/[2 f (M) · ni] to the right or left depending on whether νl > M or νl < M. The effect
of an individual voter l expressing her preferences or not on λi is thus inversely
proportional to Ci’s population size.12 Providing all voters with the same influence
from turning out therefore requires proportionality of probability πi(Rm) to ni.

It follows that irrespective of which type of individual influence we seek to
equalize across constituencies, our institutional design objective consists of solving
the following

Problem of Equal Democratic Representation:
Find a mapping from constituency sizes n1, . . . ,nm to voting weights w1, . . . ,wm

for the representatives in Rm such that

πi(Rm)
π j(Rm)

≈
ni

n j
for all i, j ∈ {1, . . . ,m}. (10)

One might conjecture that we can simply use population sizes as voting weights,
assuming wi translates into πi(Rm) linearly. This would be too quick on two grounds:
the latter presumption can be unwarranted and, importantly, the distributions of
representatives’ ideal points affect pivot probabilities. The problem’s solution will
therefore depend on how constituencies’ median preferences vary with their sizes,
and how they interact with voting weights.13

11See, e.g., Van der Vaart (1998, Example 20.5 and Corollary 21.5).
12Equation (9) derives from what statisticians call von Mises calculus (after the younger brother of

the Austrian economist). It mimics Taylor approximation of a real function in the world of statistical
functionals. Unfortunately, Ri ∈ oFni (ni

−0.5); that is, the remainder term vanishes only at a square root
rate in general. This means we cannot, strictly speaking, conclude directly from (9) that the expected
size of a shift of λi due to dropping νl is proportional to ni

−1. However, with a bit of effort, one can
show that limni→∞ 2(ni + 1) f (M) · ∆ni ( f ) = 1, where ∆ni ( f ) is the expected change of the median caused
by deleting one of ni observations from the sample, given that all νl

∈ Ci are conditionally i.i.d. with
continuous positive density f at M. A proof is available from the authors.

13Re-partitioning the population into constituencies of equal size – i.e., appropriate redistricting –
is, of course, a possibility for altogether evading the considered problem. Our analysis is concerned
with those cases where historical, geographical, cultural, and other reasons exogenously have defined a
partitionCm which cannot easily be changed. See Coate and Knight (2007) on socially optimal districting
and Gul and Pesendorfer (2010) on strategic issues in redistricting.
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D. Discussion

Before we start to investigate the stated design problem formally in Section III,
two valid concerns should be addressed. A first objection to the pivotality-based
condition (10) could be that a voter’s associated indirect influence on outcomes is
too small to worry about. We beg to differ because even tiny numbers can matter.
In particular, a level democratic playing field may be valued by the constituents as
such: influence of a member of Ci should not be systematically larger or smaller than
that of a member of C j even if both are minuscule. Ratios are then more relevant
than absolute levels. We would interpret public reaction to suggested re-weightings,
for instance in the run-up to the Lisbon Treaty’s reform of EU voting rules, along
such non-instrumental lines. Moreover, small probabilities or policy shifts can matter
also instrumentally. As discussed in detail by Edlin et al. (2007) it is an empirically
plausible, rational explanation of why people vote that they care about the wider social
benefits of policy (e.g., the entire government budget, not only what they personally
get out of it and pay). If voters attend rallies or vote on a rainy election day against all
odds because they perceive a sufficiently large stake, then pivotality has distributional
consequences for their welfare (as well as turnout incentives). Finally, though we
derived condition (10) from democratic principles applied to individuals, it relates
to the influence of constituencies. Chances of being decisive for an ultimate decision
are key to a constituency’s powers and have non-negligible financial implications for
it. They can be required to satisfy proportionality for reasons other than individual
citizens’ indirect influence.

With these arguments in mind, one might alternatively object that

πi(Rm)
π j(Rm)

=
ni

n j
for all i, j ∈ {1, . . . ,m} (11)

should actually hold with equality, not just approximately. Unfortunately, due to
the discrete nature of weighted voting, condition (11) cannot be satisfied by any
weight vector (w1, . . . ,wm) for most combinations of Cm, G, and H.14 So the realistic
task is either to minimize distance between (n1, . . . ,nm)/n and the probability vector
(π1(Rm), . . . , πm(Rm)) induced by w1, . . . ,wm, or to find a way by which condition (11)
is satisfied in an asymptotic sense – which corresponds to our notion of holding
approximately. We follow the latter approach and, in particular, will not discuss here
how one might solve the respective (non-trivial) discrete minimization problem for a
specific partition Cm and specific distributions G and H. Our ambition is to identify

14There are finitely many structurally different weighted voting games for any given m. Their
number – related to Dedekind’s problem in discrete mathematics – and the associated sets of feasible
vectors (π1(Rm), . . . , πm(Rm)) grow fast in m but include (n1, . . . ,nm)/n only in special cases. See Kurz
(2012).
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weighting rules which satisfy the ‘one person, one vote’ criterion approximately but
generally, that is: they induce πi(Rm)/π j(Rm) ≈ ni/n j for any i, j for a large class of
partitions Cm and they require only qualitative information on voter heterogeneity.

To conclude this discussion, let us reiterate that the considered median voter model
of equal representation in two-tier decision making is an admittedly big simplification.
Many collective decisions involve more than just a single dimension in which voter
preferences differ. We ignore that voting might involve private information about
some state variable (Feddersen and Pesendorfer 1996, 1997; Bouton and Castanheira
2012), and typical agency problems connected to imperfect monitoring and infrequent
delegate selections. Empirical evidence highlights that a representative may take
positions that differ significantly from his district’s median when voter preferences
within that district are sufficiently heterogeneous (see, e.g., Gerber and Lewis 2004).
Still, we take it that the best intuitions about fairness are captured by simplifying
thought experiments of a veil of ignorance kind. The analysis of the described stylized
world – no friction, particularly well-behaved preferences which are a priori identical
for all – is useful in this way. It shows the limitations of and justifications for the
simple intuition that weights should be proportional to the number of represented
constituents, in a framework that goes beyond the binary world analyzed by Penrose
and most others.

III. Fair Voting Weights for Many Constituencies

We now study how pivot probabilities πi(Rm) in the assembly depend on voting
weights and the ideal point distributions of delegates in general. We will then apply
this knowledge to the problem of equal representation.

A. Asymptotic Behavior of Pivot Probabilities

Our perspective in this section is an asymptotic one, as in essentially all related
literature since Penrose (1946). Studying the case when the number of constituencies
is large has two benefits. It helps with the statistical analysis and, moreover, we avoid
normative conundrums that can arise for a small number of constituencies. To see
this second point, consider m = 2 with constituency C1 twenty times more populous
than C2 and assume almost perfect preference correlation within constituencies. It
is then very debatable whether w1 > w2 (dictatorship of C1) or equal weights would
be the ‘fairer’ top-tier voting rule. And the welfare loss, in utilitarian terms at least,
of allowing delegate 2 to be pivotal could be enormous. Both unavoidable residual
inequality as well as possible conflict between democratic fairness and utilitarian
normative ideals decrease quickly as the number of independent voter groups rises.

Unfortunately, very few tangible results exist on the distribution of order statistics
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like the median from potentially differently distributed random variables (our delegate
ideal points λ1, . . . , λm); almost nothing seems to be known about the distribution of a
weighted median. It still turns out to be possible to characterize the probability πi(Rm)
of some delegate being the weighted median as m → ∞. To this end, we conceive of
R

1
⊂ R

2
⊂ R

3
⊂ . . . as a chain of assemblies with more and more members.

Any representative i ∈N in the chain is endowed with a voting weight wi ≥ 0 and
has a random ideal point λi with absolutely continuous distribution Fi. Some technical
conditions will need to be imposed on weights and Fi’s density but we can consider
assemblies Rm with fairly arbitrary weighted voting rules [qm; w1, . . . ,wm] and inde-
pendent ideal point distributions F1, . . . ,Fm for now.15 The obtained characterization,
therefore, may have applications that are unrelated to two-tier voting systems.

The considered sequences of weights w1,w2,w3, . . . and ideal point distributions
F1,F2,F3, . . . are assumed to satisfy a weak form of replica structure. The reason is
that otherwise our ratio of interest, πi(Rm)/π j(Rm), need not converge even if every
delegate’s relative voting weight goes to zero.16 We therefore require, first, that all
representatives i ∈ N belong to one of an arbitrary but finite number of representative
types θ ∈ {1, . . . , r}. All representatives are mutually independent but those of the same
type have the same weight and ideal point distribution, i.e., there exists a mapping
τ : N → {1, . . . , r} such that τ( j) = θ implies λ j has distribution Fθ and w j = wθ. If,
second, each type θ maintains a non-vanishing share

βθ(m) ≡ |{k ∈ {1, . . . ,m} : τ(k) = θ} |/m (12)

of representatives in Rm as m→∞, we call R1
⊂ R

2
⊂ R

3
⊂ . . . a regular chain.

Regarding the ideal point distributions F1,F2,F3 . . . we require that they are locally
well-behaved near their common median M: each associated density fi is positive at M
and varies at most quadratically, i.e., fi(M) > 0 and | fi(x) − fi(M)| ≤ c(x −M)2 for some
c ≥ 0 in a neighborhood of M.17 With these restrictions, the following is shown to hold
in Appendix 1:

15A representative’s ideal point might also be the average of a few ideal points (e.g., members of
a local coalition government or oligarchy) or reflect the interests of a constituency dictator; weights
might be unrelated to population sizes. Technically, for fixed F1, . . . ,Fm, π(Rm) amounts to a specific
quasivalue or random order value. See, e.g., Monderer and Samet (2002).

16This is illustrated by the sequence {wm
}m∈N with wm = (1, 2, . . . , 2) ∈ Rm. Representative 1 is either

a null player with π1(Rm) = 0 or, supposing that the ideal point distributions F1, . . . ,Fm are identical,
πi(Rm) = 1

m for all i = 1, . . . ,m depending on whether m is odd or even. So π1(Rm)/π2(Rm) alternates
between 0 and 1. More complicated examples of non-convergence can be constructed by having
{wm
}m∈N oscillate in a suitable fashion.

17In the i.i.d. case, local well-behavedness of ni individual ideal points – implied, e.g., by a symmetric
C2 density – is inherited by their median λi. A sufficient condition for well-behavedness in the non-i.i.d.
case where νl has density g ∗ h (M) > 0 is that g and h are symmetric and C1.
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Theorem 1. Consider a regular chain R1
⊂ R

2
⊂ R

3
⊂ . . . of assemblies. If the ideal point

distribution Fθ has median M with locally well-behaved density fθ for each representative type
θ ∈ {1, . . . , r} then

lim
m→∞

πi(Rm)
π j(Rm)

=
wi fi(M)
w j f j(M)

(13)

supposing that w j > 0.

B. Democratic Weights in General

Theorem 1 allows to give a simple general answer to the problem of equal representa-
tion when many constituencies are involved. In particular, a comparison of equations
(10) and (13) immediately yields that choosing

(w1, . . . ,wm) ∝
(

n1

f1(M)
, . . . ,

nm

fm(M)

)
(14)

achieves approximately equal representation. The implicit presumption here is, of
course, that the voting weights w1, . . . ,wm prescribed by (14) do not give rise to
some of the problematic issues which regularity rules out in Theorem 1 (e.g., a single
constituency having a majority of weight).

Typically, for a fixed number of constituencies, one can slightly raise equality
of representation relative to suggestion (14) by letting a voting power index capture
some of the combinatorial aspects of voting, which cause the potentially problematic
non-linearity of pivotality and weights. The Shapley value (cf. Shapley 1953) is such an
index.18 It evaluates each representative’s chances to be pivotal under the presumption
that all political orderings are equiprobable. The latter would be the case in our setting
only if F1 = . . . = Fm. But ideal point orderings are approximately equiprobable inside
a suitably small neighborhood of M (cf. Step 3 in Theorem 1’s proof). For a given m, one
can therefore reduce some approximation inaccuracy associated with following (14)
by referring to the Shapley value φi(qm; w1, . . . ,wm) which is induced for constituency
Ci by the weighted voting rule [qm; w1, . . . ,wm], instead of only Ci’s own weight wi.

C. Democratic Weights for Independent Constituents

We can specialize the implications of Theorem 1, and the indicated way to improve
on equation (14)’s approximation of equal representation for a given m, to the case of
mutually independent constituents as follows:

18The Shapley value was established as an index of voting power by Shapley and Shubik (1954) on
axiomatic grounds. It is often referred to as the Shapley-Shubik index in electoral applications. One could
interpret Steps 2–3 of our proof as providing additional micro-foundations to it.
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Corollary 1 (Square root rule). If the ideal points of all voters are i.i.d. and delegate i’s
ideal point equals the median voter’s ideal point in constituency Ci for all i ∈ {1, . . . ,m} then
choosing

(w1, . . . ,wm) ∝
(√

n1, . . . ,
√

nm

)
(15)

achieves equal representation asymptotically as m → ∞. For given m, the approximation of
perfectly equal representation is typically improved by choosing

(w1, . . . ,wm) such that φ(qm; w1, . . . ,wm) ∝
(√

n1, . . . ,
√

nm

)
. (16)

The main part of the corollary, i.e., the reference to the square roots of popu-
lation sizes, follows because λi is asymptotically (M, σ2

i )-normally distributed, where
σ2

i = 1/(ni[2g(M)]2), if all voter preferences are mutually independent (so f ≡ g). This
is implied by equations (8)–(9) and the central limit theorem. We therefore have

fi(M) ≈
1√

2π · 1
ni[2g(M)]2

=
g(M)
√
π/2

√
ni > 0 (17)

and can apply this normal approximation to equation (14).19

In other words, in the i.i.d. case, the standard deviations of representatives’ ideal
points λ1, . . . , λm are inversely proportional to the square roots of constituency sizes.
Since λi’s (approximately normal) density at the common expected median M is
inversely proportional to its standard deviation, the constituency’s probability to be
the assembly’s unweighted median is proportional to the square root of its size. That is:
the representative of a constituency Ci which is four times larger than constituency C j

has twice the chances to find himself in the middle of his peers. Weights proportional
to population sizes would then giveCi more a priori influence than is due. Flat weights
would discriminate against Ci because its representative would be pivotal more often
than his peers, but not proportionally more often. The balance is struck by relating to
the square root of population size.

19The error in approximation (17) vanishes quickly enough in order to conclude (15) from (14) also
for moderately big population sizes ni �∞. In case of odd ni, for instance, a well-known approximation
of central binomial coefficients implies

fi(M) =

(
ni − 1

(ni − 1)/2

)
· niG(M)(ni−1)/2[1 − G(M)](ni−1)/2g(M)

=
(
1 + O

(
1
ni

)) 4(ni−1)/2√
π(ni − 1)/2

·
ni

2ni−1 g(M) =
g(M)
√
π/2
·
√

ni + O
(

1
√

ni

)
.

See, e.g., Arnold et al. (1992, p. 10), for a derivation of density fi.
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D. Discussion

Corollary 1 echoes the finding of Penrose (1946) for the important i.i.d. benchmark case.
One is tempted to suspect a deep common reason for this, rather than coincidence. But
the respective square root results come about very differently in both models. In the
original binary setting, the non-linearity derives from the bottom tier: individual pivot
probabilities asymptotically fall in

√
ni rather than ni; square root weights ‘correct’

for this at the top tier.20 In the interval case, individual influences are inversely
proportional to ni at the bottom level. So voters from large constituencies indeed
suffer the intuitive linear rather than square root ‘bottom-tier pivotality disadvantage’.
However, the distribution of their delegate’s ideal point changes in ni – in contrast to
a constant two-point distribution for all delegates in the binomial case. This change
creates a top-tier ‘centrality advantage’ for delegates from large constituencies in the
interval case, which is absent in the binary setting. The top-tier advantage increases
in
√

ni. So square root weights suffice in the interval setting to overcome a citizen’s
bottom-tier disadvantage.

Analysis of cases in between the binary and interval ones, say, when individual
ideal points are independent and identically distributed over 2 < s < ∞ policy alter-
natives is very cumbersome. We have checked that voters’ bottom-tier disadvantage
increases from square root (s = 2) to linear (s = ∞) at a speed which differs from
that at which the indicated top-tier centrality advantage changes from non-existent to
proportional to

√
ni. So while the superposition of bottom and top-tier effects happens

to imply a square root rule for i.i.d. voter preferences in both the binomial case and the
interval case, the same does not in general apply to the multinomial case.21 This raises
a first flag concerning any policy recommendations which are justified by Corollary 1
and its binary analogues.

IV. Heterogeneity Within vs. Across Constituencies

A second flag is prompted when we investigate the robustness of the square root rule
regarding preference dependence. Adding a non-degenerate constituency-specific
shock µi to voters’ idiosyncratic preference components εl creates positive correlation
of the ideal points νl = µi + εl within a constituency. This reflects an often natural
polarization of preferences along constituency lines, which we can measure by ratio

20Note that Penrose’s square root rule does not directly relate to weights but top-tier pivot
probabilities, which in a binomial voting model equal the (Penrose-)Banzhaf power index. See Felsenthal
and Machover (1998) or Laruelle and Valenciano (2008b) for good overviews.

21There are regular chains R1
⊂ R

2
⊂ R

3
⊂ . . . such that square root rules apply to the binary and

interval cases while optimal assignments wi = c ·nαi involve α > 1
2 + δ or α < 1

2 − δwith δ > 0 for a range
of discrete policy spaces in between.
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σ2
H/σ

2
G.22 It turns out that for σ2

H/σ
2
G > 0, a linear weight allocation rule quickly

performs better than strictly concave mappings.

A. Illustration

This is most easily demonstrated for the case in which the distributions of εl and
µi are normal with zero means. Then, if εl has variance σ2

G, the median of {εl
}l∈Ci is

approximately normal with variance πσ2
G/(2ni). If the constituency-specific preference

component µi has variance σ2
H, then constituency Ci’s aggregate ideal point λi is

approximately normal with variance πσ2
G/(2ni)+σ2

H (cf. Arnold et al. 1992, Thm. 8.5.1).
Considering the corresponding densities at M = 0 for two representatives i and j yields

fi(0)
f j(0)

=


πσ2

G
2ni

+ σ2
H

πσ2
G

2n j
+ σ2

H


−

1
2

. (18)

This quickly approaches 1 if σ2
H > 0 and ni,n j → ∞, or if σ2

H → ∞. Theorem 1 then
calls for proportionality of weights to population sizes, not their square roots.

Different population sizes generally give rise to different median distributions. In
particular, C j’s distribution F j is a mean-preserving spread of Ci’s Fi if ni > n j. This is
illustrated by Figure 1. It depicts the density functions of ideal points λi and λ j when
Ci is four times larger than constituencyC j, so that we seek to achieveπi(Rm) = 4π j(Rm)
by the choice of suitable voting weights. Panel (a) shows the densities when σ2

H = 0.
fi(M)/ f j(M) ≈ 2, and so fair weights satisfy wi/w j ≈ 2. Panel (b) depicts the case
when µi, µ j ∼ U[−6σ, 6σ], where σ ≡ σ j denotes the standard deviation of the median
of idiosyncratic preference components {εl

}l∈C j in C j. Then fi(M)/ f j(M) ≈ 1, and
wi/w j ≈ ni/n j = 4 is implied by Theorem 1 for large m.

Distances between fi and f j in panel (b) are globally very small. The densities are
almost identical also at the comparatively remote positions which may be locations of
the assembly’s Condorcet winner for few constituencies, i.e., small m. For the purpose
of identifying a representative’s odds of being pivotal in Rm, the orderings of the
representatives can consequently be treated as having almost equal probabilities, and
in this case representative i’s Shapley value φi(qm; w1, . . . ,wm) and pivot probability
πi(Rm) are approximately equal. This suggests that ensuring proportionality of the
Shapley value to population sizes will solve our problem – independently of the limit
considerations in Theorem 1 – for a sufficiently high degree of polarization.

Figure 2 shows the phase transition between a square root rule to a linear rule if we

22The basic features of polarization according to Esteban and Ray (1994, p. 824) are: (i) a high degree
of homogeneity within groups, (ii) a high degree of heterogeneity across groups, and (iii) a small number
of significantly sized groups.
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Figure 1: Densities of λi and λ j when ni = 4n j and (a) µi = µ j = 0 or (b) µi, µ j ∼ U[−6σ, 6σ]

gradually raise the assumed value of σ2
H/σ

2
G, and that this transition can be fast. The

two panels consider (a) the US population’s partition into 50 states and the District of
Columbia, and (b) the current European Union with 28 member states (EU28). The
dashed lines illustrate the (interpolated) coefficients α∗ which are optimal in the sense
of minimizing ‖ · ‖1-distance between individual influences and the democratic ideal
of (1/n, . . . , 1/n) ∈ Rn as a function of polarization in the class of weighting rules

(w1, . . . ,wm) ∝ (n1
α, . . . ,nm

α) (19)

for α ∈ {0, 0.01, . . . , 1.99, 2};23 the solid lines analogously depict the distance-minimizer
α∗ when we search in the class of Shapley value-based rules

(w1, . . . ,wm) such that φ(qm; w1, . . . ,wm) ∝ (n1
α, . . . ,nm

α) . (20)

Optimality of the square root rule can be seen to break down quickly. Even small
degrees of preference dissimilarity across constituencies render a linear rule based on
the Shapley value optimal.24 A qualitative assessment of polarization – are we facing
σ2

H/σ
2
G > 0 or σ2

H/σ
2
G ≈ 0? – should hence suffice to produce linear or square root design

recommendations in most applications.

23We presume εl
∼ U[−0.5, 0.5], µi ∼ N(0, σ2

H) with 0 ≤ σ2
H ≤ 10−6 and determine estimates of the

pivot probabilities πi(R28) which are induced by a given value of α via Monte Carlo simulation.
24We remark that Figure 1(b) illustrated a polarization ratio σ2

H/σ
2
G = 6π/n j: U[−6σ, 6σ] has variance

σ2
H = 12σ2; if εl

∼ N(0, σ2
G) then σ j = σ corresponds to σ2

G = (2n j/π) · σ2. So the depicted ratio is puny if
constituency sizes of US states or EU members are inserted. Also note that α∗ fails to converge to 1 in
Figure 2 when the simpler weight-based rules in (19) are concerned. This attests to the combinatorial
nature of weighted voting, which cannot totally be ignored even for m = 28 or m = 51.
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(a)
US

(b)
EU

Figure 2: Best coefficient α for direct (dashed line) and Shapley value-based weight allocation
rules (solid line) with (a) n1, . . . ,n51 defined by US population data and (b) n1, . . . ,n28 defined
by EU28 population data

B. Supermajority Rules

Figure 2(b) considered real EU population data with simple majority rule at the top
tier, as in Sections II–III, while decisions to modify the status quo traditionally require
a supermajority in the actual EU Council. The decision quota determines the location
of the decisive assembly member: it lies in the political center for a 50% threshold
but moves towards the legislative status quo for higher quotas (as less and less
enthusiastic supporters of change need to be included in order to meet the threshold).
This can reverse the locational advantage of representative i over j in the i.i.d. case
(see Figure 1(a) for |x| ≥ 0.7σ). The associated square root recommendation breaks
down. If, however, median densities agree as in Figure 1(b), then shifts of the status
quo-dependent expected location of x∗ to the left or right have negligible effect on
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a constituency’s pivot probability. This prompts the following conjecture: not only
should a linear Shapley rule apply even for small m – it should hold independently of
the applicable majority threshold, provided constituencies are heterogeneous enough.
We will prove this below. The finding adds to the practical appeal of proportional
weights.

It should be noted, however, that analysis of supermajority rules is based on a
weaker notion of decisiveness compared to situations with a threshold of 50%. The
reason is that supermajority rules induce entire intervals of undominated polices,
instead of a single Condorcet winner. We may nevertheless generalize the quota
definition in equation (3) to

qm
≡ q

m∑
j=1

w j for q ∈ [0.5; 1) (21)

and consider the representative P : m defined by (4) to be at least weakly pivotal.
This can be justified by supposing a Pareto inefficient legislative status quo x◦ ≈ ∞
and that formation of a winning coalition proceeds as in many motivations of the
Shapley value: it starts with the most enthusiastic supporter of change (member 1 : m
of the assembly), iteratively including more conservative representatives, and gives
all bargaining power to the first – and least enthusiastic – member P : m who brings
about the required majority.25

C. Pivot Probabilities for Polarized Constituencies

We use Rm,q to denote an m-member assembly Rm which uses the relative decision
quota q ∈ [0.5; 1) and chooses policy x∗ = λP : m as defined by equations (4)–(5) and
(21). If q > 0.5 then the corresponding pivot probabilities πi(Rm,q) and π j(Rm,q) of
representatives i and j in general fail to exhibit the limit behavior characterized in
Theorem 1; so suggestion (14) and Corollary 1 do not apply.

However, a second asymptotic relationship holds for q = 0.5 as well as q ∈ (0.5; 1).
It applies to an arbitrary fixed m and concerns the situation in which independent
identically distributed shock variables µ1, . . . , µm are scaled by a factor t ≥ 0. That is,
individual ideal points are given by

νl = t · µi + εl (22)

25Status quo x◦ might also vary randomly on X in this story. Then, if the respective distribution
is symmetric around M, πi(Rm) is i’s pivot probability conditional on policy change. Justifications for
attributing most or all influence in Rm to representative P : m in the supermajority case date back to
Black (1948). The focus on the core’s extreme points can be motivated, e.g., by distance-dependent costs
of policy reform.
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and the corresponding ideal point of representative i from constituency Ci is

λi = t · µi + ε̃i (23)

with
ε̃i = median {εl : l ∈ Ci}. (24)

The i.i.d. benchmark amounts to t = 0; a large parameter t corresponds to an electorate
which is highly polarized along constituency lines.

If we denote the corresponding pivot probability of representative i by πi(Rm,q,t)
and abbreviate the Shapley value of the weighted voting game v = [qm; w1, . . . ,wm] as
φ(v), the following holds:

Theorem 2. Consider an assembly Rm,q with an arbitrary number m of constituencies and
relative decision quota q ∈ [0.5; 1). Let the ideal point of each representative i ∈ {1, . . . ,m} be
λi = t · µi + ε̃i, and suppose µ1, . . . , µm and ε̃1, . . . , ε̃m are mutually independent, ε̃1, . . . , ε̃m

have finite second moments, and µ1, . . . , µm have identical bounded densities. Then

lim
t→∞

πi(Rm,q,t)
π j(Rm,q,t)

=
φi(v)
φ j(v)

(25)

supposing that φ j(v) > 0.

The proof is provided in Appendix 2. This result does not presume equation (24)
to hold. In contrast to Theorem 1, it places no restrictions on the densities of ε̃1, . . . , ε̃m

nor on the voting weights w1, . . . ,wm in assembly Rm,q.

D. Democratic Weights for Affiliated Constituents

Applied to our model of democratic representation, variables ε̃1, . . . , ε̃m in Theorem 2
correspond to the medians of n1, . . . ,nm draws of i.i.d. idiosyncratic preference
components εl. As we already exploited in equation (18), the variance of ε̃i is
approximately equal to πσ2

G/(2ni). This means that the effect of idiosyncratic noise on
Ci’s median opinion can essentially be ignored for constituency sizes in the thousands
or millions: λi’s variance of approximatelyπσ2

G/(2ni)+σ2
H is dominated byµi’s variance

σ2
H unless the latter is smaller than σ2

G by several orders of magnitude. This implies:

Corollary 2 (Linear Shapley rule). If individual ideal points are the sum of i.i.d.
idiosyncratic components and i.i.d. constituency components with similar orders of magnitude
then

(w1, . . . ,wm) such that φ(qm; w1, . . . ,wm) ∝ (n1, . . . ,nm) (26)

achieves approximately equal representation for any given relative decision quota q ∈ [0.5; 1)
if constituency populations are large.
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We note that the Shapley value φ(v) of voting game v = [qm; w1, . . . ,wm] is often
close to the relative weight vector (w1, . . . ,wm)/

∑
i wi (see, e.g., Jelnov and Tauman

2014). Using population shares as voting weights is therefore a good practical default
for implementing (26). We only caution that it can involve considerable avoidable
errors when m is small, the distribution of constituency sizes is very skewed, or q is
close to 1. These cases are prone to pronounced non-linearity between voting weight
and power.

For instance, there exist only 9 structurally different weighted voting games (up to
isomorphisms) in case of m = 4 and simple majority quota q = 0.5. Numbers in the
corresponding Shapley values φ(v) must be multiples of 1/4! = 4.16̄%.26 Exact pro-
portionality to population shares of, say, n̄ = (42%, 25%, 24%, 9%) can, therefore, not
be achieved – one needs to live with pivot probabilities which approximate n̄. Default
weights (w1, . . . ,w4) = n̄ in this example induce pivot probabilities of π(R4) ≈ φ(v) =

(50%, 16.6̄%, 16.6̄%, 16.6̄%). This is arguably not a very satisfactory approximation.
In particular, it is more distant from n̄ than π(R4) ≈ φ(v′) = (41.6̄%, 25%, 25%, 8.3̄%),
which would be induced by (w′1, . . . ,w

′

4) = (40%, 25%, 25%, 10%). In the light of this,
one ideally tries to solve the problem

min
w
‖φ(qm; w) − n̄‖ (27)

for a suitable norm ‖ · ‖, at least when ‖φ(qm; n̄) − n̄‖ looks big. This is the so-called
inverse problem for the Shapely value: to find voting weights which induce a desired
Shapley vector, or come as close as possible. It is non-trivial, but has been studied.27

E. Discussion

Whether Corollary 2 for the case of affiliated constituents or Corollary 1 for the i.i.d.
case provides better guidance for designing a fair two-tier voting system is obviously
a contingent matter. Some preference homogeneity within, and dissimilarity across,
constituencies seems very plausible. It can arise as the result of a sorting process
(‘voting with one’s feet’) à la Tiebout (1956), be due to cultural uniformity fostered
by proximity and local interaction (see Alesina and Spolaore 2003), or have other

26Recall that
φi(v) ≡

∑
S⊆{1,...,m}r{i}

|S|! · (m − |S| − 1)!
m!

[v(S ∪ {i}) − v(S)]

where worth v(S) of coalition S is 1 if
∑

i∈S wi > qm, and 0 otherwise (Shapley 1953).
27Complete enumeration of voting games is the main option for m < 9. Kurz (2012) shows how

integer linear programming techniques can be brought to bear instead, but exact solutions are still
computationally demanding for m > 10. Good heuristic solutions exist, especially if the relative
quota q is a variable rather than given. See, e.g., Kurz and Napel (2014). Solutions to problem (27) may
still involve non-negligible distances: for instance, the Shapley vector with minimal ‖ · ‖1-distance to
n̄ = (49%, 33%, 9%, 9%) is (41.6̄%, 25%, 25%, 8.3̄%).
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reasons. If constituencies correspond to entire nations, as in case of the EU Council
or ECB Governing Council, members of a given constituency typically share more
historical experience, traditions, language, communication etc. within constituencies
than across. (This seems the key practical reason for why the issue of asymmetric
constituency sizes cannot trivially be resolved by redistricting.) This speaks clearly
in favor of a linear rule. Still, the collective decisions that are taken by the top-tier
assembly might be primarily about issues where opinions range over identical liberal–
conservative or state–market spectrums in all constituencies. Moreover, there might
be normative reasons outside the scope of our analysis for setting σ2

H = 0 when one
designs a constitution. We therefore avoid specific recommendations here for, say,
new voting rules in the EU Council.28 However, we warn that the i.i.d. presumption
is considerably more knife-edged and hence requires special motivation.

V. Concluding Remarks

We have extended the classical binary analysis of collective choice in two-tier systems
to a median voter world with a continuum of alternatives. Our results broaden the
basis for a priori assessments of voting weight arrangements, which differ widely
in practice. Arguably, the informal balance of power between constituencies at the
time of setting up a system of divisional preference aggregation matters more for the
selected voting rule than normative arguments like ours. Still, such arguments have
occasionally been taken up by practitioners (see, e.g., the Swedish diplomat Moberg
2010 on voting rules in the EU). In any case they clarify the premises behind competing
claims that this or that system – plain proportionality, various forms of ‘degressive
proportionality’, complete disregard for constituency size differences – is fairer than
another.

Our analysis has taken up the basic democratic principle of ‘one person, one vote’
and operationalized it as requiring proportionality between a constituency’s size and
the respective probability of getting its way. It turns out that this objective calls for
approximate proportionality of voting weights to the square root of population sizes if
individual voters’ single-peaked preferences vary independently between and within
constituencies. This finding is, however, not very robust. The more intuitive linear
recommendation obtains if intra-constituency preference similarities are taken into
account. Then, by default, weights ought to be proportional to population sizes.
Adaptations which target a proportional Shapley value are even more equal.

28An interesting option, inspired by the call for “flexible” democratic mechanisms in other contexts
(see Gersbach 2005, 2009), would be to specify different voting rules for different policy domains of the
EU. In some areas, such as competition policy, small or unstable between-constituency differences may
call for square root weights; while fair decision making in other policy domains, such as agriculture or
fisheries – with heterogeneous shares of farmable land and sea access – could involve linear weights.
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Although the equality of citizens’ a priori influence on collective choices is a
desirable ideal, it is of course not the only relevant benchmark. Pursuit of a welfarist
design objective (find weights such that expected total utility of voters is maximized)
and the majoritarian goal of minimizing the expected ‘democracy gap’ between the
two-tier policy outcome and the outcome preferred by the population median come
to mind.

Simulations suggest that the policy implications of all these objectives are actually
quite similar (see Maaser and Napel 2012, 2014). The different ideals are also
linked theoretically: the hypothetical situation in which outcomes of a representative
system perfectly imitate the predicted outcomes x∗∗ ≡ median {νl : l = 1, . . . ,n} of
direct democracy would necessarily involve proportionality of a constituency’s pivot
probability and its size for independent and identically distributed preferences.
Welfare-maximizing voting weights would, similarly, try to bring the two-tier outcome
x∗ in congruence with the population’s sample median if voters’ utilities decrease
linearly in distance to their respective ideals. So there are reasons to conjecture that our
conclusions extend to interesting alternative desiderata. (If utility falls quadratically,
and so total welfare is maximized by the sample mean, symmetry of the ideal point
distributions would still make x∗∗ an attractive target.)

Unfortunately, coincidence of the pivot probabilities in ideal situations with the
proportional pivot probabilities which Corollaries 1 and 2 seek to implement just
provide a suggestive heuristic. Identity of x∗ and x∗∗ is, in general, unachievable.
Pivot probabilities in the best feasible approximations may differ; so separate formal
arguments are needed for each normative goal. Our Theorems 1 and 2 may help
deriving them, as may the von Mises calculus which we invoked in order to
operationalize individual influence (cf. fn. 12). The associated functional analytic
methods look difficult, at least to us, and weighted order statistics from non-identical
distributions are generally unwieldy. We still hope that it will be possible to move
beyond the prevailing binary focus on indirect collective choice, also for design
objectives other than the one addressed here. It is an open challenge to obtain
analogous results on the utilitarian and the majoritarian weights of nations.
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Mathematical Appendix
→ Possibly to be published Online←

1. Proof of Theorem 1

1.A Overview

The major observation in the proof of Theorem 1 is that, as m grows large, the pivotal
member of Rm is most likely found very close to the median M of distributions
F1, . . . ,Fm. Namely, the probability for the realized weighted median in Rm to fall
outside a neighborhood of M turns out to approach zero at an exponential speed. One
can therefore restrict attention to a neighborhood Nε of M. In contrast to the more
and more deterministic location ofRm’s pivotal member,29 the pivotal representative’s
identity remains a complicated, weight-dependent random variable even as m → ∞.
However, orderings of those representatives with ideal points inside Nε become
in good approximation conditionally equiprobable. Delegate i’s conditional pivot
probability, therefore, corresponds to i’s Shapley value in ‘subgames’ which involve
only the representatives j with realizations λ j ∈ Nε. It is then possible to apply the
limit result proven by Neyman (1982) for the Shapley value and to exploit that the
probability of condition {λi ∈ Nε} being true becomes proportional to λi’s density at
M when ε ↓ 0.

The precise argument is structured into five steps. In Step 1, we define a particular
neighborhood Im of the expected location of the weighted median of λ1, . . . , λm.
This essential interval Im shrinks to {M} as m → ∞. It is constructed such that the
probabilities pθ, @pθ, and Apθ of a type-θ representative’s ideal point falling inside Im,
inside Im’s left half, or inside Im’s right half, respectively, can suitably be bounded.
Moreover, we decompose the deterministic total number mθ = βθ(m) · m of type-θ
representatives in assembly Rm into the random numbers /kθ, kθ, and k.θ of delegates
with ideal points to Im’s left, inside Im, and to Im’s right. Knowing the respective vector
k = (/k1, k1, k.1, . . . ,

/kr, kr, k.r) is sufficient to determine whether the Condorcet winner is
located inside Im or not.

In Step 2, it is established that the weighted median of λ1, . . . , λm is located inside
the essential interval Im with a probability that exponentially approaches 1 as m→∞.
As a corollary, the probabilityπθ(Rm) of the Condorcet winner having typeθ converges
to the corresponding conditional probability πθ(Rm

|K ) of a type-θ representative being

29If one took the assumptions of known preference distributions and an unbounded number m of
constituencies literally, someone might suggest to dispense with voting and simply implement M. The
limit consideration is, of course, only an analytical device. Numerical investigations, e.g., by Maaser
and Napel (2007) confirm that the asymptotic findings are already a good guide for 10 < m < 50.
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pivotal where eventK comprises all realizations of k such that Rm’s weighted median
lies inside Im.

In Step 3, we show that the random orderings of the k =
∑
θ∈{1,...,r} kθ representatives

with ideal point realizations λi ∈ Im asymptotically become equiprobable as m → ∞.
It follows that, with a vanishing error, the respective conditional pivot probability
πθ(Rm

|K ) equals the expected aggregate Shapley value of type-θ representatives in Im.
In Step 4, the strong convergence result by Neyman (1982) is applied to our setting.

Neyman’s result implies that the aggregate Shapley value of type-θ representatives
with ideal points in Im converges to their respective aggregate voting weight in each
considered weighted voting ‘subgame’ among the representatives with ideal points
λi ∈ Im.

Having established that πθ(Rm) is asymptotically proportional to the aggregate
voting weight of all type-θ representatives with ideal points inside Im, aggregate
probabilities are broken down to individual representatives in the final Step 5.

1.B Proof

Step 1: Essential interval Im and vector k

We begin by identifying a neighborhood of M and a sufficiently great number m such
that both the densities fθ and the numbers of type-θ representatives inRm can suitably
be bounded. This leads to the definition of intervals Im around M which later steps
will focus on. Bounds for the probabilities of a type-θ representative’s ideal point
falling inside Im, and more specifically into Im’s left or right halves, are provided in
Lemma 1. The final part of Step 1 introduces the vector k as a type-specific summary
of how many ideal points are located to the left of Im, inside Im, and to its right.

First note that

0 < u ≡ min
θ′∈{1,...,r}

fθ′(M) ≤ fθ(M) ≤ u ≡ max
θ′∈{1,...,r}

fθ′(M) (28)

for every θ ∈ {1, . . . , r}. Using the continuity of fθ in a neighborhood (M − ε1,M + ε1)
of M, which is implied by | fθ(x) − fθ(M)| ≤ c(x −M)2, we can choose 0 < ε2 ≤ ε1 such
that

5
6

fθ(M) ≤ fθ(x) ≤
7
6

fθ(M) (29)

for all x ∈ [M − ε2,M + ε2] and any specific θ ∈ {1, . . . , r}. Inequality (28) can be used
in order to obtain bounds

1
2

u ≤ fθ(x) ≤ 2u (30)
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for all x ∈ [M − ε2,M + ε2] and all θ ∈ {1, . . . , r} which do not depend on θ. The
assumed regularity of R1

⊂ R
2
⊂ R

3
⊂ . . . entails the existence of some m0

∈ N such
that βθ(m) ≥ β > 0 for all m ≥ m0. So we can also choose 0 < ε3 ≤ ε2 such that

βθ(m) ≥ β > 0 (31)

for all m ≥ 1
ε38/3 and all θ ∈ {1, . . . , r}. And we can determine 0 < ε4 ≤ ε3 such that

24 < uβ · (mβ)
1
40 ≤ uβm

1
40
θ (32)

for all m ≥ 1
ε4

8/3 , where mθ ≡ βθ(m) ·m.
Then define

ε(m) ≡ m−
3
8 (33)

and note that ε(m) ≤ ε4 iff m ≥ m1
≡

1
ε4

8/3 ≥ m0. So, whenever we consider a
sufficiently large number of representatives (specifically, m ≥ m1), inequalities (29)–
(32) are satisfied. We refer to

Im ≡ [M − ε(m),M + ε(m)] (34)

as the essential interval. The probability of an ideal point of type θ to fall inside Im is

pθ ≡

M+ε(m)∫
M−ε(m)

fθ(x)dx. (35)

For realizations in the left and right halves of Im we respectively obtain the probabilities

@pθ ≡

M∫
M−ε(m)

fθ(x)dx and Apθ ≡

M+ε(m)∫
M

fθ(x)dx, (36)

with @pθ +
Apθ = pθ.

Lemma 1. For m ≥ m1 we have

5
3

fθ(M)ε(m) ≤ pθ ≤
7
3

fθ(M)ε(m), (37)

5
6

fθ(M)ε(m) ≤ @pθ,
Apθ ≤

7
6

fθ(M)ε(m), (38)

uβm−
3
8

θ ≤ pθ ≤ 4um−
3
8

θ , and (39)
1
2

uβm−
3
8

θ ≤
@pθ,

Apθ ≤ 2um−
3
8

θ . (40)
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Proof. The inequalities can be concluded from (29)–(31), mθ = βθm, and β < 1. �

Now for any realization λ of the ideal points in assembly Rm, let

kθ ≡ #{ j : τ( j) = θ and λ j ∈ [M − ε(m),M + ε(m)]} (41)

denote the number of type-θ representatives with a policy position in the essential in-
terval, i.e., no more than ε(m) away from the expected sample median M. Analogously,
let

/kθ ≡ #{ j : τ( j) = θ and λ j ∈ (−∞,M − ε(m))} (42)

and

k.θ ≡ #{ j : τ( j) = θ and λ j ∈ (M + ε(m),∞)} (43)

denote the random number of type-θ representatives to the left and to the right of Im.
One can conceive of λ-realizations as the results of two-part random experiments:

in the first part, it is determined for each λ j whether it is located to the right of Im, to
its left, or inside Im, e.g., by drawing a vector l = (l1, . . . , lm) of independent random
variables where li = 1 (−1) indicates a realization of λi to the right (left) of Im and li = 0
indicates λi ∈ Im (with probabilities 1

2 −
@pθ, 1

2 −
Apθ, and pθ, respectively). This already

fixes /kθ, kθ, and k.θ for each θ ∈ {1, . . . , r} and is summarized by the vector

k = (/k1, k1, k.1, . . . ,
/kr, kr, k.r). (44)

In the second part, the exact ideal point locations are drawn. It will turn out that those
outside Im can be ignored with vanishing error; and the kθ type-θ ideal points inside
have conditional densities f̂θ with

f̂θ(x) ≡
fθ(x)
pθ

for x ∈ Im. (45)

Step 2: Type θ’s aggregate pivot probability πθ(Rm) converges to the conditional
probability πθ(Rm|K) of type θ being pivotal in Im

We next appeal to Hoeffding’s inequality30 in order to obtain bounds on the probability
that the shares of representatives /kθ/mθ, kθ/mθ, and k.θ/mθ with ideal points to the left,
inside, or right of Im deviate by more than a specified distance from their expectations.
These bounds will imply that one can condition on the pivotal ideal point lying inside
Im in later steps of the proof with an exponentially decreasing error.

30See Hoeffding (1963, Theorem 2).
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Hoeffding’s inequality concerns the average X ≡ 1
n ·

n∑
i=1

Xi of n independent bounded

random variables Xi ∈ [ai, bi] and guarantees

Pr
{∣∣∣X − E[X]

∣∣∣ > t
}
≤ 2 exp

 −2t2n2

n∑
i=1

(bi − ai)2

 . (46)

Our specific construction will involve only random variables Xi ∈ [0, 1], so that

Pr
{∣∣∣X − E[X]

∣∣∣ > t
}
≤ 2 exp

(
−2t2n

)
. (47)

We will put n = mθ for a fixed θ ∈ {1, . . . , r}, so that n → ∞ as m → ∞, and choose
t = n−

2
5 , which implies t(n)� ε(m). For this choice

Pr
{∣∣∣X − E[X]

∣∣∣ > n−
2
5

}
≤ 2 exp

(
−2n

1
5

)
, (48)

i.e., the probability of “extreme realizations” exponentially goes to zero as m → ∞
(and hence n = mθ →∞).

Lemma 2. For each θ ∈ {1, . . . , r} we have:

(I) Pr
{
/kθ
mθ
∈

[1
2
−

@pθ −m−
2
5

θ ,
1
2
−

@pθ + m−
2
5

θ

]}
≥ 1 − 2 exp

(
−2m

1
5
θ

)
(II) Pr

{
kθ
mθ
∈

[
pθ −m−

2
5

θ , pθ + m−
2
5

θ

]}
≥ 1 − 2 exp

(
−2m

1
5
θ

)
(III) Pr

{
k.θ
mθ
∈

[1
2
−

Apθ −m−
2
5

θ ,
1
2
−

Apθ + m−
2
5

θ

]}
≥ 1 − 2 exp

(
−2m

1
5
θ

)
.

Proof. Let θ ∈ {1, . . . , r} be arbitrary but fixed. For statement (I) we consider the n = mθ

indices j1 . . . , jmθ ∈ {1, . . . ,m} of type θ and denote by Xi the random variable which
is 1 if the realization λ ji lies inside the interval (−∞,M − ε(m)) and zero otherwise.
In the notation of Hoeffding’s inequality we have X = /kθ/mθ. Since the probability
that λ ji lies in the left half of Im is given by @pθ and

∫ M

−∞
fθ(x)dx =

∫
∞

M
fθ(x)dx = 1

2 , the
probability that λ ji lies in the interval (−∞,M− ε(m)) is given by 1

2 −
@pθ. Thus we have

E[X] = 1
2 −

@pθ and (48) implies (I). The statements (II) and (III) follow along the same
lines (namely, by letting Xi be the characteristic function of intervals [M−ε(m),M+ε(m)]
and (M + ε(m),∞), respectively). Note that mθ

−2/5
� ε(m) = m−3/8 for large m. �

We can use the bounds on pθ in (39) and that βm ≤ mθ ≤ m for m ≥ m1
≥ m0 in
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order to conclude from (II) that for any given θ ∈ {1, . . . , r}

uβ2ε(m) ·m −m
3
5 ≤ kθ ≤ 4uε(m) ·m + m

3
5 (49)

with a probability of at least 1− 2 · exp
(
−2mθ

1
5

)
. A further implication of observations

(I)–(III) is:

Lemma 3. For m ≥ m1 the inequalities

/kθ <
1
2

mθ (50)

k.θ <
1
2

mθ (51)

/kθ +
2
3

kθ >
1
2

mθ (52)

k.θ +
2
3

kθ >
1
2

mθ (53)

are simultaneously satisfied for all θ ∈ {1, . . . , r} with a probability of at least 1 − 6r ·
exp

(
−2(βm)

1
5
)
.

Proof. The events considered in statements (I), (II), and (III) of Lemma 2 are realized
for all θ ∈ {1, . . . , r}with a joint probability of at least(

1 − 2 exp
(
−2(βm)

1
5
))3r
≥ 1 − 6r exp

(
−2(βm)

1
5
)
, (54)

since mθ ≥ βm for m ≥ m0 and (1 − x)k
≥ (1 − kx) is valid for all x ∈ [0, 1] and k ∈ N. If

m ≥ m1, we then have

/kθ ≤
(1
2
−

@pθ
)
·mθ + mθ

3
5 ≤

mθ

2
−

uβmθ
5
8

2
+ mθ

3
5 =

mθ

2
−mθ

3
5

uβm
1
40
θ

2
− 1

︸         ︷︷         ︸
>0

<
1
2

mθ (55)

for anyθ ∈ {1, . . . , r}. The first inequality follows directly from (I), the second inequality
uses (40), and the final inequality follows from (32). Analogous inequalities pertain to
k.θ.
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Moreover, we can conclude

/kθ +
2
3

kθ ≥
(1
2
−

@pθ
)
·mθ −mθ

3
5 +

2pθ
3

mθ −
2
3

mθ
3
5 (56)

=
mθ

2
−

5
3

mθ
3
5 +

(
2pθ
3
−

@pθ

)
mθ (57)

=
mθ

2
+

5
3

mθ
3
5

(
2 Apθ
5

mθ
2
5 −

@pθ
5

mθ
2
5 − 1

)
(58)

≥
mθ

2
+

5
3

mθ
3
5

( 1
10
·

3
7

pθ ·mθ
2
5 − 1

)
(59)

≥
mθ

2
+

5
3

mθ
3
5

uβmθ
1
40

24
− 1

︸          ︷︷          ︸
>0

>
1
2

mθ. (60)

The first inequality uses (I) and (II); the second one employs (37) and (38); the third
applies (39); and the final one invokes (32). Analogous inequalities pertain to k.θ + 2

3kθ.
�

Lemma 3 implies that the respective unweighted sample median among represen-
tatives of type θ is located within Im for all θ ∈ {1, . . . , r}with a probability that quickly
approaches 1. The same must a fortiori be true for the pivotal assembly member, i.e.,
the weighted median among all representatives.

We collect in the setK all k = (/k1, k1, k.1, . . . ,
/kr, kr, k.r) such that the events considered

by Lemma 2, (I)–(III), are realized for all θ ∈ {1, . . . , r}. The inequalities in Lemma 3
then hold for any k ∈ K . We can decompose the probability πθ(Rm) of some type-θ
representative being pivotal into conditional probabilities πθ(Rm

|K ) and πθ(Rm
|¬K )

which respectively concern onlyλ-realizations where k ∈ K and k < K . Then Lemma 3
implies

πθ(Rm) = Pr{K} · πθ(Rm
|K ) + Pr{¬K} · πθ(Rm

|¬K )

= πθ(Rm
|K ) + O(exp(−2m

1
5 )). (61)

Step 3: πθ(Rm|K) converges to the expectation of type θ’s Shapley value inside Im

Now condition on some k ∈ K such that exactly
∑
θ kθ = k ideal points fall inside

the essential interval, where k is asymptotically proportional to ε(m) ·m = m
5
8 by (49).

Label them 1, . . . , k for ease of notation and let % ∈ Sk denote an arbitrary element of
the space Sk of permutations which bijectively map (1, . . . , k) to some ( j1, . . . , jk). The
conditional probability for the event that the k ideal points located in Im are ordered
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exactly as they are in % by the second step of the experiment is

p(%|k) ≡
∫ ε(m)

−ε(m)

∫ ε(m)

x j1

. . .

∫ ε(m)

x jk−1

f̂ j1(x j1) . . . f̂ jk(x jk) dx jk . . . dx j2dx j1 . (62)

Lemma 4. For all m ≥ m1, any k ∈ K with
∑
θ kθ = k and permutation % ∈ Sk we have

p(%|k) =
1
k!

+
1
k!
·O(m−

1
8 ). (63)

Proof. The premise | fθ(x)− fθ(M)| ≤ c(x−M)2 for x ∈ Im permits us to choose δ ∈ O(ε(m)2)
with δ ≤ 1

2 such that

(1 − δ) · fθ(M) ≤ fθ(x) ≤ (1 + δ) · fθ(M) (64)

and, equivalently,
(1 − δ) · f̂θ(M) ≤ f̂θ(x) ≤ (1 + δ) · f̂θ(M) (65)

for all types 1 ≤ θ ≤ r and all x ∈ Im. Integrating (64) on Im yields

2ε(m)(1 − δ) · fθ(M) ≤ pθ ≤ 2ε(m)(1 + δ) · fθ(M). (66)

With these bounds we can conclude from f̂θ(M) =
fθ(M)

pθ
that

1 − δ
2ε(m)

≤
1

2ε(m)(1 + δ)
≤ f̂θ(M) ≤

1
2ε(m)(1 − δ)

≤
1 + 2δ
2ε(m)

(67)

because 1/(1 − δ) ≤ 1 + 2δ.
Using (1 − δ)k

≥ 1 − kδ and (1 + δ)k
≤ 1 + 2kδ for kδ ≤ 1,31 and noting that the

hypercube [0, 1]k can be partitioned into k! polytopes {x ∈ [0, 1]k : x j1 ≤ x j2 ≤ . . . ≤ x jk}

31The first statement is easily seen by induction on k. The second follows from

(1 + δ)k =

k∑
j=0

(
k
j

)
δ j
≤ 1 +

k∑
j=1

1
j!

(kδ) j︸︷︷︸
≤kδ

≤ 1 + kδ
k∑

j=1

1
j!︸︷︷︸

≤e−1

≤ 1 + 2kδ.

Since k is asymptotically proportional to m
5
8 and ε(m)2 = m−

6
8 we can choose δ ∈ O(m−

6
8 ) with (kδ) j

≤ kδ
for j ≥ 1 whenever m is large enough.
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with equal volume, inequality (65) yields

p(%|k) ≥ (1 − δ)k
∫ ε(m)

−ε(m)

∫ ε(m)

x j1

. . .

∫ ε(m)

x jk−1

f̂ j1(M) . . . f̂ jk(M) dx jk . . . dx j2dx j1 (68)

=
(1 − δ)k

k!
· f̂ j1(M) . . . f̂ jk(M)

∫ ε(m)

−ε(m)

∫ ε(m)

−ε(m)
. . .

∫ ε(m)

−ε(m)
1 dx jk . . . dx j2dx j1 (69)

=
(1 − δ)k

k!
· f̂ j1(M) . . . f̂ jk(M) · (2ε(m))k (70)

(67)
≥

(1 − δ)2k

k!
≥

1 − 2kδ
k!

(71)

and, analogously,

p(%|k) ≤ (1 + δ)k
∫ ε(m)

−ε(m)

∫ ε(m)

x j1

. . .

∫ ε(m)

x jk−1

f̂ j1(M) . . . f̂ jk(M) dx jk . . . dx j2dx j1 (72)

=
(1 + δ)k

k!
· f̂ j1(M) . . . f̂ jk(M) · (2ε(m))k (73)

(67)
≤

(1 + δ)k(1 + 2δ)k

k!
≤

(1 + 2δ)2k

k!
≤

1 + 8kδ
k!

. (74)

This implies ∣∣∣∣∣ p(%|k) −
1
k!

∣∣∣∣∣ ≤ 8kδ
k!
. (75)

Because k ∈ O(m
5
8 ) and δ ∈ O(m−

6
8 ), the relative error |p(%|k)− (k!)−1

|

/
(k!)−1 tends to zero

at least as fast as O(m−
1
8 ). �

So even though the probabilities of the orderings % ∈ Sk of the k agents inside
Im differ depending on which specific % is considered and what are the involved
representative types (i.e., which k is considered), these differences vanish and all
orderings become equiprobable as m gets large.

Type θ’s conditional pivot probability can be written as

πθ(Rm
|K ) =

∑
k∈K

P(k) ·
{ ∑
%∈Sk :ψ(k,%)=θ

p(%|k)
}
, (76)

where P(k) denotes the probability of k conditional on event {k ∈ K} and function
ψ : K × Sk → {1, . . . , r} identifies the type θ′ of the pivotal member in Rm when k
describes how the representative types are divided between Im and its left or right,
and % captures the ordering inside Im. Lemma 4 approximates the probability of
ordering % conditional on k as 1/k!, and one thus obtains

πθ(Rm
|K ) =

∑
k∈K

P(k) · φθ(k) + O(m−
1
8 ) (77)
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with
φθ(k) =

∑
%∈Sk :ψ(k,%)=θ

1
k!
. (78)

Because a constant factor 1
k! pertains to each ordering % ∈ Sk, φθ(k) equals the

probability that, as the weights w1,w2, . . . ,wk of the k representatives inside Im are
accumulated in uniform random order, the threshold q(k) ≡ qm

−
∑
θ∈{1,...,r}

/kθwθ is first
reached by the weight of a type-θ representative. The term φθ(k) is, therefore, simply
the aggregated Shapley value of the type-θ representatives in the weighted voting
game defined by quota q(k) and weight vector (w1,w2, . . . ,wk). Equation (77) states
that πθ(Rm

|K ) converges to the expectation of this Shapley value φθ(k).

Step 4: Type θ’s Shapley value φθ(k) converges to θ’s relative weight in Im

Condition k ∈ K implies 1
3 ·

∑
θ∈{1,...,r} kθwθ ≤ q(k) ≤ 2

3 ·
∑
θ∈{1,...,r} kθwθ (see Lemma 3).

And our premises guarantee that the relative weight of each individual representative
in Im shrinks to zero. The “Main Theorem∗” in Neyman (1982), therefore, has the
following corollary:

Lemma 5 (Neyman 1982). Given that k ∈ K ,

φθ(k) =
kθwθ∑r

θ′=1 kθ′wθ′
· (1 + µ(m)) with lim

m→∞
|µ(m)| = 0. (79)

Proof. Neyman’s theorem considers an infinite sequence of weighted voting games
[qn; wn] with n voters whose individual relative weights wn

i approach 0, and
in which the relative quota qn is bounded away from 0 and 100% (or at least
limn→∞ qn/(maxi wn

i ) = ∞). Neyman establishes that32

lim
n→∞
|φTn(qn; wn) −

∑
i∈Tn

wn
i | = 0 (80)

holds for any sequence of voter subsets Tn ⊆ {1, . . . ,n}, where φTn(qn; wn) denotes their
aggregate Shapley value. (We here consider qn = q(k)/wΣ, wn = (w1,w2, . . . ,wk)/wΣ

and Tn = {i ∈ N : τ(i) = θ} for N = {1, . . . , k} and wΣ =
∑

i∈N wi.33)
It is trivial that (79) holds if wθ = 0 = φθ(k). So we can assume wθ > 0, and because

there is at least the proportion β > 0 of representatives from each type in Im for large
m, the aggregate relative weight of θ-type representatives in Im is bounded away from

32We somewhat specialize his finding and adapt the notation.
33Our notation leaves some inessential technicalities implicit: K really refers to a family of such sets,

parameterized by m; we implicitly consider a sequence of k-vectors such that n = k→∞ as m→∞.
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0, i.e.,34

lim infm→∞
kθwθ∑r

θ′=1 kθ′wθ′
> 0. (81)

Therefore, not only the absolute error µ̃(m) made in approximating φθ(k) = φTn(qn; wn)
by kθwθ∑r

θ′=1 kθ′wθ′
but also the relative error µ(m) ≡ µ̃(m)/ kθwθ∑r

θ′=1 kθ′wθ′
must vanish as m→ ∞.

�

Step 5: Attributing aggregate pivot probabilities to individual representatives

It remains to disaggregate the pivot probabilities πθ(Rm) and πθ′(Rm) of types θ and
θ′ to individual representatives i and j. The aggregate relative weight of type-θ
representatives in the essential interval satisfies

kθwθ∑r
θ′=1 kθ′wθ′

=
βθ(m)mpθwθ(1 + O(m−

2
5 ))∑r

θ′=1 βθ′(m)mpθ′wθ′(1 −O(m− 2
5 ))

=
βθ(m)pθwθ∑r

θ′=1 βθ′(m)pθ′wθ′

(
1 + O(m−

2
5 )
)
(82)

for any k ∈ K (see (II) in Lemma 2).35 Combining this with equations (61), (77) and
(79) yields

lim
m→∞

πθ(Rm)
πθ′(Rm)

= lim
m→∞

βθ(m)pθwθ

βθ′(m)pθ′wθ′
= lim

m→∞

βθ(m) fθ(M)wθ

βθ′(m) fθ′(M)wθ′
(83)

for arbitrary θ, θ′ ∈ {1, . . . , r}. Here, the final equality uses

lim
m→∞

pθ
pθ′

= lim
m→∞

∫ ε(m)

−ε(m)
fθ(x)dx∫ ε(m)

−ε(m)
fθ′(x)dx

=
fθ(M)
fθ′(M)

, (84)

which can be deduced from (66).
Our main claim then follows from noting that the mθ = βθ(m) ·m representatives of

type θ in assembly Rm are symmetric to each other and, therefore, must have identical
pivot probabilities in Rm. Hence

lim
m→∞

πi(Rm)
π j(Rm)

= lim
m→∞

πτ(i)(Rm)/βτ(i)(m)
πτ( j)(Rm)/βτ( j)(m)

=
fi(M)wi

f j(M)w j
. (85)

1.C Remarks

Let us end Appendix 1 with remarks on possible generalizations. First, the quadratic
bound on fθ’s variation in a neighborhood of M could be relaxed by choosing different
constants in equations (33) and (47): t(mθ) = m−b1

θ with b1 < 1
2 is all that is needed in

order to ensure a vanishing error probability in (47); and ε(m) = m−b2 with b2 < b1 in
34The limit itself need not exist because our premises do not rule out that, e.g., mθ is periodic in m.
35To see the second equality note that for y ∈ (0, 1

2 ) we have 1
1−y = 1 + y + y2 + . . . ≤ 1 + 2y = 1 + O(y).

Similarly, 1
1−y ≥ 1 + y = 1 + O(y) and so 1

1−y = 1 + O(y).
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(33) is sufficient for ε(m) � t(mθ). Then a local bound | fθ(x) − fθ(M)| ≤ cxa for a > 1−b2
b2

is sufficient to establish Lemma 4. Requirement b2 < b1 < 1
2 leaves generous room for

a < 2, but implies a > 1.
Second, it is actually sufficient to assume local continuity of all fθ at M, rather

than any strengthening of this,36 if one appeals to an unpublished result by Abraham
Neyman (personal communication). When, as in our setting, all voting weights have
the same order of magnitude, the uniform convergence theorem of Neyman (1982)
for the Shapley value can be generalized to hold for all random order values that are
‘sufficiently close’ to the Shapley value. More specifically, consider the expected
marginal contribution of a voter i ∈ {1, . . . , k}

Φi(v) ≡
∑
%∈Sk

p(%) · [v(Ti(%) ∪ {i}) − v(Ti(%))] (86)

in a weighted voting game v = [q; w1, . . . ,wk], where any given permutation % ∈ Sk on
N = {1, . . . , k} has probability p(%), and Ti(%) ⊂ N denotes the set of i’s predecessors in %,
i.e., Ti(%) = { j : %( j) < %(i)}. The random order value Φ(v) equals the Shapley value φ(v)
if p(%) = 1

k! . This equiprobability can, for instance, be obtained by letting % be defined
by the order statistics of a vector of random variables X = (X1, . . . ,Xk) with mutually
independent and [0, 1]-uniformly distributed X1, . . . ,Xk. The latter assumption can be
relaxed somewhat without destroying the asymptotic proportionality of i’s weight wi

and Φi(v) which Neyman (1982) has established when Φ(v) = φ(v):

Theorem 3 (Neyman, personal communication). Fix L > 1. For every ε > 0 there
exist δ > 0 and K > 0 such that if v is the weighted voting game v = [q; w1, . . . ,wk]
with w1, . . . ,wk > 0,

∑k
i=1 wi = 1, K · maxi wi < q < 1 − K · maxi wi, maxi, j wi/w j < L,

and {p(%)}%∈Sk in (86) is defined by the order statistics of independent [0, 1]-valued random
variables X1, . . . ,Xk with densities fi such that 1 − δ < fi(x) < 1 + δ for every x ∈ [0, 1] and
i ∈ {1, . . . , k} then

k∑
i=1

|wi −Φi(v)| < ε. (87)

Of course, one can equivalently let {p(%)}%∈Sk be defined by the order statistics of
independent Im-valued random variables with densities f̂1, . . . , f̂k, instead of [0, 1]-
valued ones, if the theorem’s condition 1 − δ < fi(x) < 1 + δ is replaced by the
requirement that 1−δ

2ε(m) < f̂i(x) < 1+δ
2ε(m) for all x ∈ Im.

36Local continuity of fθ is obviously necessary: a modification of fθ(M) – with fθ(x) unchanged
for x , M – would affect wi fθ(M) but not πi(Rm). Also the requirement of positive density at the
common median cannot be relaxed. This is seen, e.g., by considering densities fi, f j where fi(x) = 0 on a
neighborhood Nε(M) while f j(M) = 0 with f j(x) > 0 for x ∈ Nε(M) \ {M}; then πi(Rm)/π j(Rm) converges
to 0 rather than wi/w j.
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The values of δ and L which one obtains for a given ε in Theorem 3 apply to any
value of k. We consider the weighted voting subgames played by the k =

∑
θ∈{1,...,r} kθ

representatives with realizations λi ∈ Im for given k ∈ K . The relative weight of any
such representative i, ŵi = wi/

∑
θ∈{1,...,r} kθwθ, approaches zero as m→ ∞; and so does

the maximum relative weight. Recalling that the corresponding subgame’s relative
quota q̂ = q(k)/

∑
θ∈{1,...,r} kθwθ is bounded by 1

3 ≤ q̂ ≤ 2
3 , the condition K ·maxi ŵi < q̂ <

1 − K ·maxi ŵi is satisfied when m is sufficiently large. Any null players with wi = 0
can w.l.o.g. be removed from consideration. Then all weights have the same order of
magnitude, i.e., the choice of L such that maxi, j ŵi/ŵ j < L holds for all k ∈ K is trivial.

Moreover, the conditional densities f̂θ in our setup satisfy 1−δ
2ε(m) < f̂i(x) < 1+δ

2ε(m) for
every θ ∈ {1, . . . , r} and x ∈ Im when m is large enough. Specifically, continuity of fθ
in a neighborhood of M implies that for any given ε > 0 there exists ∆(ε) > 0 with
limε↓0 ∆(ε) = 0 such that

(1 − ∆(ε)) · fθ(M) ≤ fθ(x) ≤ (1 + ∆(ε)) · fθ(M) (88)

for all x ∈ [M − ε,M + ε] and all θ ∈ {1, . . . , r} (cf. inequality (29)). Similarly to
inequality (37) we then conclude

(1 − ∆(ε)) fθ(M) · 2ε ≤ pθ ≤ (1 + ∆(ε)) fθ(M) · 2ε. (89)

Combining the last two inequalities with inequality (45) yields

(1 − ∆(ε))
(1 + ∆(ε)) · 2ε

≤ f̂θ(x) ≤
(1 + ∆(ε))

(1 − ∆(ε)) · 2ε
. (90)

So considering ε = ε(m) and any fixed δ, the conditional densities f̂θ satisfy 1−δ
2ε(m) <

f̂i(x) < 1+δ
2ε(m) for every θ ∈ {1, . . . , r} and x ∈ Im when m is sufficiently large.

Hence, all premises in Neyman’s unpublished Theorem 3 are satisfied by the
corresponding weighted voting subgames of agents with ideal points in Im. Theorem 3,
therefore, ensures the approximate weight proportionality of the aggregate random
order value Φ of the type-θ representatives. Now if one recalls (76) and notices that
the bracketed sum equals Φ(v) with v = [q̂; ŵ j1 , . . . , ŵ jk] when j1, . . . , jk denote the
representatives with ideal points in Im, we can replace Lemmata 4–5 by the following:

Lemma 6.

πθ(Rm
|K ) =

kθwθ∑r
θ′=1 kθ′wθ′

· (1 + µ(m)) with lim
m→∞
|µ(m)| = 0. (91)
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The proof of Theorem 1 can then be concluded by appealing to (61), hence

lim
m→∞

πθ(Rm
|K )

πθ′(Rm|K )
= lim

m→∞

πθ(Rm)
πθ′(Rm)

, (92)

and equations (83)–(85). Importantly, the presumption | fθ(x) − fθ(M)| ≤ c(x −M)2 for
x ∈ [M− ε1,M + ε1], which Lemma 4 required, is not needed by Lemma 6. It can hence
be replaced in Theorem 1 by the simpler requirement that each fθ is continuous in a
neighborhood of M.

Finally, the assumption that only a finite number of different densities and weights
are involved in the chain R1

⊂ R
2
⊂ R

3
⊂ . . . could be relaxed. However, it is

critical that each representative’s relative weight vanishes as m→∞ in order to apply
Neyman’s results; the asymptotic relation (13) fails to hold, for instance, for a chain
with w1 =

∑
j>1 w j. And because our result depends on a vanishing relative error, which

is considered neither by Neyman (1982) nor Theorem 3,37 it is similarly important that
the aggregate relative weight of each type of representatives is bounded away from
zero. For instance, with just one representative having weight w1 = 1 and β2(m) = m−1
ones with w2 = 2 (see fn. 16), limm→∞ π1(Rm) = limm→∞ π j(Rm) = 0 for any j , 1 but the
limit of π1(Rm)/π j(Rm) may fail to exist.

2. Proof of Theorem 2

The result easily follows from the definition of the Shapley value and the fact that the
orderings which are induced by the realizations of the vectors λ = (λ1, . . . , λm) and
µ = (µ1, . . . , µm) will coincide with a probability that tends to 1 as t approaches infinity.
To see the latter, ignore any null events in which several ideal points or constituency
shocks coincide and let %̂(x) denote the permutation of {1, . . . ,m} such that xi < x j

whenever %̂(i) < %̂( j) for the real-valued vector x = (xi)i∈{1,...,m}. We then have:

Lemma 7. For i ∈ {1, . . . ,m} and t > 0 let λt
i ≡ t · µi + ε̃i, where µ1, . . . , µm and ε̃1, . . . , ε̃m

are all mutually independent random variables, ε̃1, . . . , ε̃m have finite means and variances,
and µ1, . . . , µm have an identical bounded density. Then

lim
t→∞

Pr(%̂(λt) = %) = lim
t→∞

Pr(%̂(µ) = %) =
1

m!
(93)

for each permutation % of {1, . . . ,m}.

Proof. Let us denote the finite variance of ε̃i by σ2
i and let U ≡ (maxi |E[ε̃i]|)

3. We
can choose a real number k such that the bounded density function h of µi, with

37See, however, Lindner and Machover (2004), where conditions very similar to ours are considered
for the Shapley and Banzhaf values, and the related discussion by Lindner and Owen (2007).
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i ∈ {1, . . . ,m}, satisfies h(x) ≤ k for all x ∈ R. For any given realization µ j = x, the
probability of the independent random variable µi assuming a value inside interval
(x−4t−

2
3 , x+4t−

2
3 ) is bounded above by k·8t−

2
3 . We can infer that the event

{
|µi−µ j| < 4t−

2
3

}
,

which is equivalent to the event
{
|tµi − tµ j| < 4t

1
3

}
, has a probability of at most k · 8t−

2
3

for any i , j ∈ {1, . . . ,m}. And we can conclude from Chebyshev’s inequality that
Pr(|ε̃i − E[ε̃i]| < t

1
3 ) is at least 1 − σ2

i · t
−

2
3 . For t ≥ U, we have |E[ε̃i]| ≤ t

1
3 ; and if

|ε̃i − E[ε̃i]| < t
1
3 holds then also

2t
1
3 > |E[ε̃i]| + |ε̃i − E[ε̃i]| ≥ |ε̃i| (94)

by the triangle inequality. Hence, the probability for (94) to hold when t ≥ U is
Pr(|ε̃i| < 2t

1
3 ) ≥ 1 − σ2

i · t
−

2
3 for each i ∈ {1, . . . ,m}.

Now consider the joint event that (i) |tµi − tµ j| ≥ 4t
1
3 for all pairs i , j ∈ {1, . . . ,m}

and (ii) that |ε̃i| < 2t
1
3 for all i ∈ {1, . . . ,m}. In this event, the ordering of λt

1, . . . , λ
t
m is

determined entirely by the realization of tµ1, . . . , tµm; in particular, %̂(λt) = %̂(µ). Using
the mutual independence of the considered random variables this joint event must
have a probability of at least

(m
2)∏

s=1

(
1 − k · 8t−

2
3

)
·

m∏
i=1

(
1 − σ2

i · t
−

2
3

)
≥ 1 −

8k
(
m
2

)
+

m∑
i=1

σ2
i

 · t− 2
3 (95)

for t ≥ U. The right hand side tends to 1 as t approaches infinity. It hence remains to
acknowledge that any ordering %̂(µ) has an equal probability of 1/m! becauseµ1, . . . , µm

are i.i.d. �
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