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Abstract

Representatives from differently sized constituencies take political decisions by a
weighted voting rule and adopt the ideal point of the weighted median amongst them.
Preferences of each representative are supposed to coincide with the constituency’s
median voter. The paper investigates how each constituency’s population size should
be mapped to a voting weight for its delegate when the objective is to maximize the
total expected utility generated by the collective decisions. Depending on the consid-
ered utility functions, this is equivalent to approximating the sample mean or median
voter of the population by a weighted median of sub-sample medians. Monte Carlo
simulations indicate that utilitarian welfare is maximized by a square root rule if the
ideal points of voters are all independent and identically distributed. However, if citi-
zens are risk-neutral and their preferences are sufficiently positively correlated within
constituencies, i.e., if heterogeneity between constituencies dominates heterogeneity
within, then a linear rule performs better.

Keywords: weighted voting, two-tier voting systems, square root rules, representative
democracy, utilitarianism

1 Introduction

An important application of voting power analysis (see Felsenthal and Machover 1998 for
a comprehensive overview) concerns the question of how voting weights should be assigned
in two-tier voting systems. At the bottom tier, countries, states, districts, or other kinds of
constituencies each elect a representative who will on their behalf cast a block vote in a top
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tier assembly or council. The Council of Ministers of the European Union (EU) is one of the
most prominent examples of such a system, and much research on fair or optimal design of
voting rules has been stimulated by successive EU enlargements. Other examples include
the International Monetary Fund (see Leech and Leech 2009), the German Bundesrat and,
with inessential qualifications, the US Electoral College.

In order to evaluate the design of two-tier voting systems a multitude of normative
criteria can be brought to bear. Depending on the application at hand, desirable features
include the responsiveness of collective decisions to individual preference changes, the capa-
bility to reach a decision, or equality of representation. From the perspective of mainstream
economics, utilitarian welfare is a particularly prominent criterion (see Harsanyi 1955 and,
e.g., Barberà and Jackson 2006). In particular, if the design of a two-tier voting system
maximizes the total expected utility of the citizens, it is Pareto efficient: no other system
can raise expected utility of some citizens without lowering it for others.

In this paper, we study the relationship between the allocation of block voting rights,
i.e., the voting weights of constituency representatives, and the utilitarian welfare that is in-
duced by the outcomes of a two-tier decision making process. We consider a model in which
the feasible policy alternatives constitute a finite or infinite real interval. Voter preferences
are assumed to be single-peaked, i.e., an individual’s utility from a particular collective
decision is strictly decreasing in distance to the respective voter’s ideal point. These ideal
points are conceived of as random variables with an identical continuous distribution for
all citizens.

For ease of exposition, we suppose that each constituency comprises an odd number of
voters. Then we assume, first, that the policy advocated by the single representative of any
given constituency is congruent with the ideal point of the respective constituency’s median

voter. Second, the decision which is taken at the top tier is identified with the position
of the pivotal representative. This representative is determined by the given allocation of
voting weights and a 50% decision quota together with the policy positions of all delegates.
It corresponds to the weighted median amongst the delegates and to the core of the spatial
voting game in the assembly. Consideration of the respective, generically single-valued
core provides a short-cut to the equilibrium outcome of various conceivable negotiation
protocols, which might structure strategic bargaining at the council level.1 As long as
the weighted median of delegates who represent their constituencies’ median voters is a
reasonable approximation for the outcomes generated by the two-tier voting system, the
actual processes of preference aggregation within the council and within the constituencies
can remain unspecified. In particular, the latter could differ across constituencies.

We take a set of differently sized constituencies as given and seek to find the weight
allocation rule which maximizes total expected utility. We presume that the preferences
over policy outcomes have the same cardinal intensity across voters and distinguish be-
tween two utility specifications. Namely, each voter’s cardinal utility function decreases
either linearly or quadratically in the distance between the individual’s ideal point and
the collective policy outcome. The former specification corresponds to voters who are risk

1See, e.g., Cho and Duggan (2009).
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neutral, i.e., who are indifferent between facing distances x and y to their ideal points with
probabilities p and 1− p ∈ (0, 1), or suffering the expected distance px+ (1− p)y for sure.
The latter specification describes risk-averse individuals.

Standard results from statistics imply that the position of the population’s median voter

maximizes total expected utility for the linear specification, whereas the position of the
population’s mean voter maximizes it for the quadratic specification. It is, however, a non-
trivial question how the best estimates for the sample median or sample mean, respectively,
can be obtained by computing a weighted median of the medians of differently sized sub-
samples. We are not aware of – and have unfortunately neither been able to obtain – general
analytical results on this issue. We, therefore, conduct extensive computer simulations.

The main finding of our Monte Carlo analysis is that a square root rule should be
used in order to allocate voting weights if all citizens are a priori identical in a strong
sense: namely, if their ideal points come from the same probability distribution and are
statistically independent of each other. Note, however, that in this case there should be
little objection to redrawing constituency boundaries. Obviously, the problem of maxi-
mizing total expected utility could then be readily resolved by creating constituencies of
equal population size and giving each representative the same weight if the number of con-
stituencies is fixed – or by creating an all-encompassing, single constituency if not. This
observation motivates the consideration of citizens that are a priori identical in a weaker
sense: their ideal points come from the same probability distribution but are positively

correlated within the constituencies. For this scenario, a degressively proportional rule re-
mains optimal for the quadratic utility specification, but the right degree of degressivity
depends on the given vector of population sizes. And, importantly, total expected utility is
maximized by a linear rule if voters are risk-neutral, i.e., if utility falls linearly in distance,
and the degree of within-constituency similarity (or dissimilarity between constituencies)
is sufficiently high.

The design of welfare-maximizing voting rules for two-tier systems of representative
democracy has received formal mathematical consideration only quite recently.2 Barberà
and Jackson (2006) study the design of efficient voting rules in a fairly general setup for
binary decisions. They derive a square root allocation rule for the so-called “fixed-size-
of-blocks model”, which assumes a great degree of independence between the preferences
of members of the same constituency. By contrast, they show a directly proportional al-
location of weights to be optimal in their “fixed-number-of-blocks model”, which reflects
strong preference alignments between individuals within the same constituency (and inde-
pendence across constituencies). These results are corroborated by Beisbart and Bovens
(2007). Closely related, Beisbart et al. (2005) evaluate total expected utility under dif-

2Historically, most attention has been devoted to giving each citizen an equally effective voice in elections
(cf. Reynolds v. Sims, 377 U.S. 533, 1964). In two-tier voting systems, this calls for an a priori equal chance
of each voter to indirectly determine the policy outcome. For binary policy spaces, Penrose (1946) has
shown that individual powers are approximately equalized if voting weights of the representatives are
chosen such that their Penrose-Banzhaf voting powers (Penrose 1946; Banzhaf 1965) are proportional to
the square root of the corresponding population sizes. An extension to convex policy spaces is provided
by Maaser and Napel (2007) and Kurz et al. (2011).

3



ferent decision rules for the Council of Ministers of the European Union and the premise
that proposals always affect all individuals from a given country identically. Koriyama
and Laslier (2011) argue in great generality that a utilitarian ideal requires vote allocation
rules to be degressively proportional.

The considered objective of maximum total utility is intimately linked with achieving
congruence between individual preferences and the collective policy. For binary decisions
that are taken by the citizens directly (corresponding to the degenerate case of singleton
constituencies and uniform weights), Rae (1969) has shown that the probability that the
average citizen “has his way” (i.e., is in agreement with the voting outcome) is maximized
by 50% majority rule.3 But the outcome of indirect, two-tier decision processes can easily
deviate from that of direct democracy: even under simple majority rule it is possible that
the alternative adopted by the body of representatives is supported only by a minority of
all citizens.

The degree of majoritarianism of a two-tier system decreases in the expected difference
between the size of the popular majority camp and the number of citizens in favor of the
assembly’s decision. Felsenthal and Machover (1998, pp. 63–78; 1999) study this so-called
mean majority deficit in a binary voting model. They find it to be minimal under a square
root allocation of voting weights.4 As shown by Felsenthal and Machover, minimization of
the mean majority deficit can also be interpreted in a somewhat utilitarian vein, namely as
maximizing the sum of citizens’ indirect voting power as measured by the non-normalized
Penrose-Banzhaf index. Kirsch (2007) considers optimal weights for a related notion of
majoritarian deficit. Similarly, Feix et al. (2008) investigate the probability of situations
where the decision taken by the representatives and a hypothetical referendum decision
diverge.5 All these investigations consider the case of binary alternatives. Moving to
richer policy spaces, Maaser and Napel (2012) analyze the expected discrepancy between
a two-tier and a direct-democratic single-tier system in a one-dimensional spatial voting
model.

A dichotomous pattern has emerged from this literature: rules that relate voting weights
to the square root of population sizes have been found to be optimal under various objective
functions if citizens are assumed to be homogeneous in the sense of having independent

and identically distributed (i.i.d.) preferences. But square root rules cease to be optimal,
and often a linear rule replaces them, if dependence of some sort or another is introduced.
Investigations that highlight the critical role played by the degree of similarity within
constituencies as opposed to that between constituencies include Gelman et al. (2002),
Barberà and Jackson (2006), Kirsch (2007), Beisbart and Bovens (2007), Feix et al. (2008),
Kaniovski (2008), and Maaser and Napel (2012).6 For example, extending the main result
of Felsenthal and Machover (1999) from {0, 1}-choices to the convex policy space [0, 1],

3Dubey and Shapley (1979) provide a generalization of this result to the domain of all simple games.
4Felsenthal and Machover refer to this allocation rule as the second square root rule in order to dis-

tinguish it from Penrose’s (1946) (first) square root rule, which requires representatives’ voting powers –
rather than their weights – to be proportional to the square roots of their constituencies’ population sizes.

5This situation is known in the social choice literature as a referendum paradox (see, e.g., Nurmi 1998).
6Also see Felsenthal and Machover (1998, pp. 70ff).
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Maaser and Napel (2012) find that the direct democracy deficit is minimized when voting
weights are allocated to representatives in proportion to the square root of constituency
population sizes if ideal points are i.i.d. However, if sufficiently strong positive correlation
of preferences within each constituency is introduced, then the best weight allocation rule
is linear instead.

2 Model

We will consider a different objective function here than in Maaser and Napel (2012). But
the baseline model of two-tier decision making is the same in both papers. The following
description and overlapping parts of the analysis will draw directly on the presentation in
Maaser and Napel (2012).

Consider the partition C = {C1, . . . , Cr} of a large voter population into r constituencies
with nj = |Cj | > 0 members each. Let n ≡

∑

j nj and all nj be odd numbers for simplicity.
The preferences of any voter i ∈ {1, . . . , n} =

⋃

j Cj are assumed to be single-peaked with

ideal point νi in a convex one-dimensional policy space X ⊂ R, i.e., a finite or infinite
interval. These ideal points are conceived of as realizations of random variables with an
identical continuous a priori distribution; any given profile (ν1, . . . , νn) of ideal points is
interpreted as reflecting voter preferences on a specific one-dimensional policy issue (a tax
level, expenditure on a public good, extent of redistribution, boldness of pension reform,
etc.).

A collective decision x ∈ X on the issue at hand is taken by an assembly or council of
representatives R which consists of one representative from each constituency. Without
going into details, we assume that the preferences of Cj ’s representative are congruent with
its median voter, i.e., representative j has ideal point

λj = median{νi : i ∈ Cj}.

This is clearly an idealizing abstraction because political agents can often exploit informa-
tional asymmetries in order to pursue their own rather than their principal’s preferences
(e.g., concerning their privileges – see Gerber and Lewis 2004 for empirical evidence on the
effect of constituency heterogeneity on the alignment between representative and median
voter).

In the top-tier assembly R, each constituency Cj has voting weight wj ≥ 0. Any subset
S ⊆ {1, . . . , r} of representatives which achieves a combined weight

∑

j∈S wj above q ≡
0.5

∑r

j=1
wj, i.e., comprises a simple majority of total weight, can implement a policy x ∈

X . So collective decisions are taken according to the weighted voting rule [q;w1, . . . , wr].
Let λk:r denote the k-th leftmost ideal point amongst the representatives (i. e., the k-th

order statistic of λ1, . . . , λr) and consider the random variable P defined by

P = min
{

l ∈ {1, . . . , r} :
l∑

k=1

wk:r > q
}

.

5



For a generic weight vector (w1, . . . , wr), representative P : r’s ideal point, λP :r, is the
unique policy that beats any alternative x ∈ X in a pairwise vote, i. e., it constitutes the
core of the voting game inR with weights w1, . . . , wr and a 50% quota. Without any formal
analysis of decision procedures that might be applied in R (see Banks and Duggan 2000,
or Cho and Duggan 2009), we assume that the policy agreed in the council coincides with
the ideal point of pivotal representative P : r. In summary, the policy outcome produced
by the two-tiered voting system is

xR = λP :r .

For ideal point profile (ν1, . . . , νn) the total utility that the society receives from xR is

Ū =

n∑

i=1

−|νi − xR|, or (1a)

Û =
n∑

i=1

−(νi − xR)
2 (1b)

if for each voter utility decreases (a) linearly or (b) quadratically in the distance between
his ideal point and the outcome.

Taking partition C as given we would like to answer the following question: Which allo-

cation of voting weights maximizes the total expected utility of the two-tier voting system?

Or, more formally, we search for weight allocation rules W which approximately solve the
problems

max
w1,...,wr

E
[
Ū
]
, and (2a)

max
w1,...,wr

E
[

Û
]

, (2b)

respectively, where by an “allocation rule” we mean a simple mapping W which assigns
weights (w1, . . . , wr) = W (C1, . . . , Cr) to any given partition of a large population. Our
criterion for acceptably “simple” mappings W : C 7→ (w1, . . . , wr) will be that they are
power laws, i.e., wj = nα

j for some constant α ∈ [0, 1]. This class of mappings nests the
square root and linear rules which have played prominent roles in the previous literature.7

3 Analysis

Under the model’s assumptions, it can be shown that societal welfare Ū would be maxi-
mized if, for any realization of voter preferences, we had

xR = median{ν1, . . . , νn}.
7To be precise, Penrose’s square root rule is nested only asymptotically, namely when C involves a great

number r of constituencies with a non-pathological size distribution. See Lindner and Machover (2004)
and Chang et al. (2006) on the vanishing difference between voting weights and voting powers as r → ∞.
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That is, it is the unconstrained ideal to choose the preferred policy of the median individual
in the union (see, e.g., Schwertman et al. 1990). This policy outcome would also be brought
about by frictionless collective decision-making in a full assembly of all citizens under
simple majority rule since it beats every alternative policy in a pairwise vote. Because
of the loss of information that results from only aggregating the votes of the top-tier
representatives, however, xR does generally not coincide with the median ideal point in
the population. Problem (2a) is thus equivalent to that of minimizing the expected value
of |xR−median{ν1, . . . , νn}|, which is referred to as the direct democracy deficit in Maaser
and Napel (2012).8

While the median has the property of minimizing the sum of absolute distances, the sum
of squared distances is minimized by the mean (see, e.g., Cramér 1946, Sect. 15.4). Thus,
the ideal non-voting solution to problem (2b) would be to always implement the policy
that corresponds to the mean of ideal points {ν1, . . . , νn}. Our maximization problem can,
therefore, be reframed in the case of quadratic utility functions as follows: by which simple
weight allocation rule do we achieve a particularly “small” expected distance between xR

and the mean voter position? In principle, an estimate of the overall mean could be ob-
tained by taking the nj-weighted mean of λ1, . . . , λr. If, however, representatives’ positions
are aggregated by voting under strategic interaction rather than being averaged (e.g., by
a bureaucrat) then the outcome xR at the top-tier will match one of the representatives’
positions in the considered spatial voting model, namely their nα

j -weighted median in our
model. This will usually differ from the nj-weighted mean. Optimal statistical aggregation
by averaging does not really help in solving the problem of optimal aggregation by voting.

If the ideal points of voters i ∈ Cj are pairwise independent and come from an arbi-
trary identical distribution F with positive density f on X , then its median position λj

asymptotically has a normal distribution with mean µ = F−1(0.5) and standard deviation

σj =
1

2 f(µ)
√
nj

(3)

(see, e.g., Arnold et al. 1992, p. 223). The variance of the position of Cj ’s representative
is the smaller, the greater the population size nj.

This implies that even in the seemingly trivial case of uniform weights w1 = . . . = wr,
the top-tier decision xR ∈ X has a rather non-trivial distribution when constituency sizes
differ. Namely, xR is then an order statistic of differently distributed random variables,
for which relatively few limit results are known. For non-identical weights w1, . . . , wr, xR

is a combinatorial function of such order statistics. Therefore, it seems extremely hard –
at least to us – to obtain or approximate solutions to (2a) and (2b) analytically. We will
now briefly look at two special cases in order to develop some intuition, and then turn to
computer simulations in Section 4.

8Note that even though total utility from the decisions which result from the considered two-tier process
typically falls short of the global maximum achieved under a direct democracy, representative democracy
has a number of advantages. These presumably also generate utility for citizens which is not considered
in our model.
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First, consider the trivial case of equipopulous constituencies. Any uniform weight
allocation w1 = . . . = wr > 0 then maximizes total expected utility and the optimal value
of α remains undetermined. Under identical weights, the pivotal representative’s ideal point
is the (unweighted) median of λ1, . . . , λr. How close this comes to the population’s sample
median and mean, respectively, will depend on the number of symmetric constituencies in
the partition.9

So far no assumptions have been made regarding how voter ideal points are jointly
distributed. It can be convincingly argued that – for the kind of constitutional design
problem that we are dealing with – specific knowledge about individual preferences should
be ignored. From behind the constitutional “veil of ignorance” all citizens should be con-
sidered identical a priori. This corresponds to drawing every ideal point νi from the same

marginal probability distribution F . However, such a constitutional a priori perspective
does not necessarily entail that preferences of citizens must also be conceived of as in-

dependent of each other. It is true that the i.i.d. assumption for all ideal points νi with
i ∈

⋃

j Cj , i.e., consideration of the product distribution F n, is a particularly compelling
benchmark. Still, the partition C may have reasons that need to be acknowledged behind
the “veil of ignorance” (e.g., geographic barriers, ethnics, language, or religion). For these
reasons voter preferences are likely to be more closely connected within constituencies than
across them.

As a second case of interest, suppose that νi = νh whenever i, h ∈ Cj . This carries
the notion that citizens have on average closer links with each other within constituencies
than across constituencies to its extreme. Problem (2a) has a clear-cut solution in this
situation: E[Ū ] is maximal if the linear weight allocation rule wj = nj for j = 1, . . . , r, i.e.,
α∗ = 1, is used. Perfect correlation within constituencies implies that the ordered ideal
points of all citizens i = 1, . . . , n,

ν1:n ≤ ν2:n ≤ ν3:n ≤ . . . ≤ νn−1:n ≤ νn:n,

can be written as

λ1:r = . . . = λ1:r
︸ ︷︷ ︸

n1:r times

≤ λ2:r = . . . = λ2:r
︸ ︷︷ ︸

n2:r times

≤ . . . ≤ λr:r = . . . = λr:r
︸ ︷︷ ︸

nr:r times

.

Thus, weights proportional to population sizes make representative j pivotal in R if and
only if his policy position (and thus that of all Cj-citizens) is also the population median.
In the non-degenerate case of high but not perfect correlation within constituencies this
optimality of proportional weights can be expected to apply approximately. The simu-
lations reported in Section 4 indeed confirm this intuition: with linear individual utility
functions total expected utility is maximized by an essentially linear rule provided that the
ideal points of the citizens vary noticeably more across than within constituencies.

The above extreme case is also instructive to appreciate that a linear rule cannot be
optimal in general when individual utility decreases quadratically in the distance between

9See Beisbart and Bovens (2011) for a related investigation in a binary voting model. They ask the
worst-case question: which number of equipopulous districts maximizes the mean majority deficit?
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ideal point and outcome. When constituencies differ in population size, the overall fre-
quency distribution of policy positions will typically not be symmetric. It will be skewed
to the right if a majority of the large constituencies prefers a policy to the left of the center
(see Figure 1), and it is skewed to the left if the large constituencies have ideal points on the
right. But then the population median (which would result from α = 1) does not provide
a good estimate of the population mean: the sample median is necessarily located to the
left of the sample mean if the distribution is skewed to the right (just like average income
is larger than median income if there are many small incomes and a few very large ones).
A value of α < 1 then produces a smaller deviation between the pivotal representative’s
ideal point and the mean ideal point. Figure 1 illustrates this by taking EU27 members
as an example. In the figure all citizens within each constituency have identical policy
preferences drawn from a uniform distribution on [−1, 1]. For the depicted right-skewed
realization (ν1, . . . , νn) of ideal points, α = 0.71 is best among the considered parameters
α = {0, 0.01, . . . , 1}: the associated outcome xR is as close as possible to the mean of all
ideal points. The same degressivity parameter α = 0.71 would be optimal for the ideal
point realization (ν ′

1
, . . . , ν ′

n) with ν ′
i = −νi for all i = 1, . . . , n, which is skewed to the left.

For realizations that give rise to an essentially symmetric frequency distribution, α = 0.71
performs as well as any alternative value (such as α = 1). We can, therefore, conclude that
α = 1 must be suboptimal if one averages over all possible frequency distributions, i.e.,
considers the expected value E[Û ]. The optimal value of α depends on the constituency
configuration at hand as well as on the theoretical distribution of individual ideal points.10

It might but need not be close to 0.5.
When we consider non-degenerate degrees of correlation between the ideal points within

a given constituency, it is even more difficult to come up with a clear intuition for what
the best degree of degressivity should be. In the benchmark case of ideal points that are
all pairwise independent and drawn from the same symmetric distribution, computation of
the nj-weighted mean of λ1, . . . , λr would be the theoretically best way to estimate both
the location of the sample median and the sample mean. The nj-weighted mean is sensitive
to outliers amongst the representatives’ ideal points. This rules out optimality of α = 0
because uniform weights select the median representative’s ideal point and hence disregard
any information about outliers. But a too great value of α would enable representatives
from large constituencies to implement their preferred policy even if they happen to be
outliers. It is not obvious at the outset what “too great” means and which α strikes the
right balance.

An admittedly crude intuitive argument in favor of α = 0.5 runs as follows. First
consider the linear utility specification, so that the theoretical ideal is to approximate the
population’s median voter as well as possible. If all voter ideal points νi are i.i.d. then
each individual i = 1, . . . , n a priori has probability 1/n to be the population median.
The latter is hence located in constituency Cj with probability nj/n. This makes weights

10The problem of finding the optimal value of α bears some resemblance to choosing an appropriate
power-law transformation in order to improve the symmetry of a skewed empirical distribution (see, e.g.,
Yeo and Johnson 2000).
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which induce top-tier pivot probabilities proportional to the respective population sizes a
particularly reasonable starting point. As Kurz et al. (2011) have shown, proportionality
between the probability of the event {j = P :r} and nj can be achieved approximately by
selecting weights wj that are proportional to the square root of nj in the i.i.d. case.

Second, for the quadratic utility specification, the goal is to approximate the popula-
tion’s mean voter by selecting a particular weighted median of the representatives. The
mean voter is a virtual one who does not belong to any particular constituency. Notably,
the mean ideal point will almost surely differ from those of all voters i ∈ {1, . . . , n} when
the ideal point distribution has a density. Thus, the intuition provided for a square root
rule in the case of linear utility does not apply directly to the case of quadratic utility
functions. However, for the symmetric ideal point distributions which we focus on in this
paper, the population mean and median will be very close to each other if all voters are
pairwise independent. One may conjecture, therefore, that α = 0.5 will work well under
an i.i.d. assumption irrespective of the utility specification.

4 Simulations

Since we are unable to obtain more precise analytical insights – let alone any useful ap-
proximation of E[Ū ] or E[Û ] as a function of α – we apply the Monte-Carlo method. It
exploits that the empirical average of s independent realizations of Ū =

∑n

i=1
−|νi − xR|

and Û =
∑n

i=1
−(νi−xR)

2 converges to E[Ū ] and E[Û ], respectively, as s → ∞ by the law
of large numbers.

In order to obtain realizations of Ū and Û for the case of i.i.d. voter ideal points, we
first draw n (pseudo-)random numbers from a given distribution F , giving rise to a list
v = (ν1, . . . , νn).11 Second, v is sorted within consecutive blocks of size n1, n2, . . . , nr in
order to obtain the corresponding realizations of the constituency medians λ1, λ2, . . . , λr.
We then infer the weighted median of these, using weights wj = nα

j for values of α which
range from 0 to 1 in steps of 0.01, and thus obtain xR for each value of α. The resulting
values of Ū and Û are recorded, and the procedure is repeated for one million iterations.
Finally, we determine the values of α, denoted by ᾱ∗ and α̂∗ which produced the largest
average total utility Ū and Û , respectively.

In our simulations we typically consider sets of r = 25 constituencies. Experience
suggests that simulation results then do no longer exhibit strong dependence on the com-
binatorial peculiarities of the configuration at hand (this would be the case for significantly
smaller numbers of constituencies). Most of the considered population configurations are
artificial: sizes n1, . . . , nr are obtained by drawing random numbers from a specified distri-
bution. The entry U(103, 3 · 103) in Table 1, for instance, indicates that realizations of C

11Since the considered number of voters in each constituency Cj is large (nj ≫ 50), the respective
population and constituency medians will approximately have normal distributions irrespective of the
specific F which one considers. For the sake of completeness, let it still be mentioned that individual ideal
points were drawn from a standard uniform distribution U(0, 1) in our simulations. The MATLAB source
code is available upon e-mail request.
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(a) ᾱ∗

(1) (2) (3) (4) (5)

U(1000, 3000) 0.52 0.51 0.51 0.51 0.53

N(2000, 200) 0.43 0.62 0.65 0.57 0.44

N(2000, 400) 0.48 0.52 0.50 0.47 0.51

P(1.0, 200) 0.52 0.52 0.52 0.53 0.52

(b) α̂∗

(1) (2) (3) (4) (5)

U(1000, 3000) 0.51 0.51 0.48 0.51 0.53

N(2000, 200) 0.49 0.62 0.65 0.57 0.44

N(2000, 400) 0.52 0.52 0.50 0.46 0.53

P(1.0, 200) 0.52 0.52 0.51 0.53 0.52

Table 1: Welfare-maximal α for i.i.d. voters and (a) linear utility or (b) quadratic utility

are considered for which each constituency size between 1 000 and 3 000 voters had uniform

probability. Besides the uniform distribution, also truncated normal distributions N(µ, σ)
and Pareto distributions P(κ, θ) with skewness parameter κ and threshold parameter θ
have been employed in order to generate population configurations. For each “distribution
type” of the population configuration, five independent realizations of n1, . . . , nr have been
investigated. So Table 1 reports the respective optimal values ᾱ∗ (linear utility) and α̂∗

(quadratic utility) for altogether 20 different configurations.
The 95%-confidence intervals around the empirical mean of Ū and Û are typically too

wide to rule out that a neighbor of the reported best value of α produces a higher level of
welfare. However, differences are significant when sufficiently distinct values like α = 0.5
and α = 1 are compared.12 The obtained estimates of E[∆] are in most cases unimodal
functions of α, i.e., increasing on [0, α∗) and decreasing on (α∗, 1]. Overall, results in
Table 1 are suggesting strongly that a square root allocation rule is close to being optimal
(within the class of elementary power laws) if the ideal points of all voters are independent
and identically distributed.

Concerning cases in which the ideal points of citizens are not independent and identi-
cally distributed, we focus on a special type of positive correlation within constituencies.
In particular, we determine individual ideal points νi by a two-step random experiment:

12In particular, variation in population sizes nj ∼ N(2000, 200) is rather small. This results in an
objective function that is essentially flat for a large range of values of α.
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Figure 2: Welfare-maximal α for EU27 and linear utility as dissimilarity ratio d is varied

first, we draw a constituency-specific parameter µj independently for each j = 1, . . . , r
from an identical distribution G with standard deviation σext. Parameter σext captures
the degree of external heterogeneity between C1, . . . , Cr for the policy issue at hand. The
realization of parameter µj is taken to reflect the expected ideal point of citizens from Cj
on a given policy issue. Each citizen i ∈ Cj is then assigned an individual ideal point νi

from a distribution Fµj
which has mean µj and is otherwise just a shifted version of some

distribution F ≡ F0 for each constituency j = 1, . . . , r.13 F ’s standard deviation σint is
a measure of the internal heterogeneity in any constituency. It reflects opinion differences
within any given Cj . In summary, our second set of simulations has taken the ideal points
of all citizens to be identically distributed with convolved a priori distribution G ∗ F , but
to involve dependencies : citizens in constituency Cj all experience the same shift µj , which
is independent of µk for any k 6= j.

The ratio σext/σint =: d between external and internal heterogeneity provides a measure
of the degree to which citizens are more similar within than between constituencies or,
loosely speaking, the preference dissimilarity of the constituencies. In the i.i.d. case no

dissimilarity exists between different constituencies, i.e., results in Table 1 are based on
d = 0. Table 2 reports optimal values ᾱ∗ and α̂∗ for the same configurations as in Table 1
and two positive dissimilarity levels, namely d = 8 and the degenerate case of infinite
dissimilarity (σint = 0). While results for i.i.d. ideal points did not significantly differ
between the linear specification of individual utility functions and the quadratic one in
Table 1, this is no longer the case when significant preference correlations exist.

The optimality of ᾱ∗ = 1 as d → ∞ for the linear specification has already been ex-
plained in our theoretical discussion in Section 3 (considering fixed σext > 0 and σint → 0).

13Specifically, we draw µj from a uniform distribution U(−a, a) with variance σ2
ext, and then obtain

νi = µj + ε with ε ∼ U(0, 1).
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(a) ᾱ∗

(1) (2) (3) (4) (5)

U(1000, 3000)
d = 8 0.96 0.96 0.96 0.97 0.96

d = ∞ 1.00 1.00 1.00 1.00 1.00

N(2000, 200)
d = 8 0.96 0.95 0.97 0.96 0.97

d = ∞ 1.00 1.00 1.00 1.00 1.00

N(2000, 400)
d = 8 0.96 0.96 0.95 0.97 0.95

d = ∞ 1.00 1.00 1.00 1.00 1.00

P(1.0, 200)
d = 8 0.97 0.96 0.96 0.97 0.97

d = ∞ 1.00 1.00 1.00 1.00 1.00

(b) α̂∗

(1) (2) (3) (4) (5)

U(1000, 3000)
d = 8 0.48 0.49 0.52 0.53 0.48

d = ∞ 0.51 0.49 0.54 0.55 0.50

N(2000, 200)
d = 8 0.47 0.51 0.65 0.53 0.62

d = ∞ 0.53 0.54 0.56 0.61 0.51

N(2000, 400)
d = 8 0.50 0.54 0.47 0.54 0.52

d = ∞ 0.49 0.51 0.51 0.51 0.47

P(1.0, 200)
d = 8 0.64 0.56 0.55 0.68 0.66

d = ∞ 0.64 0.56 0.55 0.68 0.66

Table 2: Welfare-maximal α for two different preference dissimilarity ratios d and (a) linear
utility or (b) quadratic utility
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The findings reported in Table 2(a) indicate that this result extends in close approxima-
tion to more moderate levels of dissimilarity such as d ≥ 8. Figure 2 demonstrates that
a situation in which nearly linear voting weight allocations maximize E[Ū ] arises quickly
as the preference dissimilarity which underlies the policy ideals of representatives in R
increases. The figure considers r = 27 and a population configuration based on recent
Eurostat data for members of the European Union.14 The EU Council of Ministers is the
predominant example of a two-tier voting system because its members officially represent
national governments and, eventually, the citizenries of the member states. Note, however,
that the current weighted voting rules for the Council, and also its future ones as codified
in the Treaty of Lisbon, involve supermajority requirements in multiple dimensions, while
Figure 2 is based on the assumption of a 50% decision quota. We leave an investigation of
the effect of supermajority rules on the maximizer (and maximum) of utilitarian welfare
in our spatial voting framework to future research.

The optimal levels of α̂∗ for a quadratic utility specification, displayed in Table 2(b),
fail to show convergence to any specific rule as d → ∞. In particular, it does not seem
to make a significant difference whether dissimilarity is moderate or extreme. Moreover,
the reported values of α̂∗ do not differ noticeably from their i.i.d. counterparts in Table 1
except for Pareto-distributed population configurations (where constituency sizes have a
skewed distribution).

We argued in our discussion of Figure 1 that α = 1 should not be expected to be optimal
when individual utility functions are quadratic and d → ∞, and that it is not clear which
particular α̂ should be optimal. Table 2 suggests vaguely that a square root allocation
might actually do best when constituency sizes are drawn from a symmetric distribution
(uniform or normal). But certainly more weight needs to be given to large constituencies
than under a square root law when the population distribution is skewed (Pareto).

Note that even if the distribution of population sizes n1, . . . , nr is symmetric, the realized
frequency distributions of ideal points will be skewed more often than not. For instance,
a frequency distribution like the one displayed in Figure 1 will still be common even if we
have constituency sizes that range equidistantly from some smallest value n to a largest
value n (mimicking a uniform distribution on [n, n]). So some degressively proportional
weighting scheme raises total expected utility relative to a linear rule. We conjecture that,
for symmetric distributions of constituency sizes, the average distance between the sample
median and the sample mean is larger, the larger the variance of n1, . . . , nr. Therefore,
the greater the variance of n1, . . . , nr, the smaller the optimal value α̂∗. This hypothesis is
supported by our simulation data. In particular, Figure 3 displays the welfare-maximizing
level α̂∗ in case of the quadratic utility specification and degenerate preference dissimilarity
(d = ∞) for altogether 52 distinct population configurations that were drawn either from
uniform and (truncated) normal distributions with r = 25 or r = 35. A higher standard
deviation s of the population sizes n1, . . . , nr visibly translates into a smaller optimal value

14We have used 2010 population data measured in 1 000 individuals for computational reasons. This
corresponds with the “block model” in Barberà and Jackson (2006), which supposes that a constituency
can be subdivided into equally sized “blocks” whose members have perfectly correlated preferences within
blocks, but are independent across blocks.
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Figure 3: Optimal α̂ for 52 population configurations with sample standard deviations s.

α̂∗. The slope of the corresponding regression line is not very steep, but it is significantly
different from zero. Still, a value of α = 0.5 is never very far off. This is in line with the
findings in Table 2 for a symmetric distribution of constituency sizes.

5 Concluding remarks

The findings of our investigation of utilitarian welfare or total expected utility of the citizens
in a spatial voting model might be summarized – cum grano salis – as supporting the
conclusions of the related literature on binary voting models (see Section 1). In particular,
if the preferences of the voters are characterized by independent and identically distributed
(i.i.d.) ideal points over a one-dimensional policy space, then using a square root rule

for allocating voting weights performs best. This is irrespective of whether voters’ utility
decreases linearly or quadratically in distance from their policy ideal (corresponding to risk
neutrality or a particular extent of risk aversion when facing uncertain collective decisions).
Unfortunately, we could provide but a vague intuition for why a square root law obtains.

Our findings are also consistent with the binary voting literature in that optimality of a
square root rule – be it elementary like wj = n0.5

j or sophisticated like the seminal suggestion
by Penrose (1946) – tends not to extend to situations in which the i.i.d. assumption is
violated. It has increasingly come to be understood that when voters have a priori identical
random preferences in the binary case or on some richer space, like the one considered
here, and these preferences exhibit positive correlation within constituencies, then there is
a potentially very rapid phase transition from α = 0.5 to α = 1 performing best.
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However, the results shown in Table 2(b) and Figure 3 cast some doubt on this di-
chotomy between using a square root rule for similar constituencies and a linear rule for
sufficiently dissimilar constituencies. Even though α = 0.5 ceases to be welfare-maximizing
in the considered class of allocation rules, especially when the distribution of population
sizes is skewed, it tends to perform better than a linear rule when individuals have a
quadratic utility function. This is surprising given that our assumptions such as single-
peakedness of preferences in a one-dimensional policy space and the prominent role of
the (weighted) median are rather straightforward generalizations from the realm of binary
voting.

Note additionally that our utilitarian welfare investigation builds on the restrictive
postulate that different individuals derive the same satisfaction or dissatisfaction when a
policy at a certain distance from their ideal point is implemented. In other words, we
conduct interpersonal comparisons of utility. These cannot be avoided by any utilitarian
welfare analysis in economics or political science. And, here, they can be defended by the
a prioristic nature of the investigation: they express the value judgment that all individuals
should be treated as anonymous equals in constitutional analysis. Still, the fact that our
findings differ for different specifications of voter utility – and rather distinct conclusions
might be derived concerning the most desirable allocation of voting weights in, e.g., the
EU’s Council of Ministers – might be seen as weakening the appeal of total expected utility
as a guide to the “best” weight allocation rule.
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