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Abstract

The Shapley value is commonly illustrated by roll call votes in which players support or

reject a proposal in sequence. If all sequences are equiprobable, a voter’s Shapley value can

be interpreted as the probability of being pivotal, i.e., to bring about the required majority

or to make this impossible for others. We characterize the joint probability distributions

over cooperation patterns that permit this roll call interpretation: individual votes may be

interdependent but must be exchangeable.

Keywords: Shapley value; Shapley-Shubik index; roll call model; voting power

JEL codes: C71; D70; D72

Highlights:

• Roll call interpretation of the Shapley value permits diverse cooperation patterns

• A pivotal vote in a roll call seals a proposal’s fate in either way

• The probability of being pivotal is commonly viewed as a player’s voting power

• The Shapley value equals pivot probabilities if and only if votes are exchangeable
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1 Introduction

A player’s Shapley value equals its expected contribution to surplus creation if full

cooperation among players is established in random order. Going back to Shapley

(1953) and Shapley and Shubik (1954), this is often illustrated by voting games:

shareholders, delegates to a council, parties, etc. cast their respective voting weight in

favor of a proposal one after another. If player i’s vote is the first to reach the required

majority threshold, it ‘swings’ the status of the coalition S of earlier supporters from

losing (v(S) = 0) to winning (v(S∪{i}) = 1); i is then attributed a ‘marginal contribution’

of v(S ∪ {i}) − v(S) = 1. Averaging these contributions across all equiprobable voting

sequences yields i’s Shapley value ϕi(v). It is equal to the probability that i is decisive

for passing a proposal. This is commonly interpreted as voting power and also called

i’s Shapley-Shubik index (SSI).

The implicit assumption in this well-known roll call interpretation of Shapley value

and SSI is that all voters support the proposal, i.e., every player joins the coalition either

sooner or later. This was criticized early on, e.g., by Luce and Raiffa (1957, p. 255). It

is still not widely known that the roll call interpretation of the Shapley value extends

considerably beyond uniform “yes” votes.

Namely, a voter can also be decisive for rejecting a proposal by voting “no” and

being first to ensure that the required majority cannot be met. In general, we say

player i is pivotal in a given voting sequence if the collective decision may still go either

way before i’s vote but becomes fully determined by it. Already Mann and Shapley

(1960, p. 4; 1964, p. 153) observed that player i’s SSI equals i’s pivot probability if all

players vote in a mutually independent way with a common probability x ∈ [0, 1] for

“yes”, not just when x = 1 or 0. This was first explicitly proven in Felsenthal and

Machover (1996).

But ϕi(v)’s roll call interpretation applies even more generally: it is sufficient that

players’ votes are exchangeable, so possibly dependent. This can be deduced from

combinatorial results by Hu (2006, Prop. 4). We give a short non-combinatorial proof

here. Our main objective, however, is to show that exchangeability is necessary, too:

i’s Shapley value equals its pivot probability in roll call votes with random order if and

only if players’ cooperation decisions are exchangeable.

A characterization of when pivotality in role calls reduces to the Shapley value is

of interest beyond committee decisions: binary threshold structures similar to voting

appear in diverse contexts. Think, e.g., of dichotomous stability assessments in which

loans that are either performing or non-performing play the role of votes and exceeding
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a given quota of non-performing loans reflects insolvency. And if the usual definition

of i’s marginal contribution is extended to reflect also the reduction of creatable surplus

if i refuses to cooperate, then the roll call interpretation of the Shapley value extends

to general coalitional games without full cooperation too.

2 Preliminaries

Consider a set N = {1, . . . ,n} of n > 0 players. A coalitional game v : 2N
→ R with

v(∅) = 0 maps each coalition S ⊆ N of cooperating players to a real number, typically

interpreted as a surplus that increases from zero to v(N) as more players cooperate. In

voting applications, i ∈ S reflects a “yes” vote by player i. Then the focus is on simple

(voting) games with v(S) ∈ {0, 1}: v(S) = 1 identifies passage of a proposal, v(∅) = 0,

v(N) = 1, and S ⊆ T ⇒ v(S) ≤ v(T). Simple games uT defined by uT(S) = 1 ⇔ T ⊆ S

for given ∅ , T ⊆ N are called unanimity games and form a basis of the vector space of

coalitional games.

Values are operators that map coalitional games to Rn and thereby suggest an

allocation of v(N), indicate the distribution of voting power, etc. A value ψ is called

linear if ψ(α · u + β · v) = α · ψ(u) + β · ψ(v) for all constants α, β ∈ R and all coalitional

games u, v on the same set N of agents, where
(
α · u + β · v

)
(S) = α ·u(S) +β ·v(S) for all

S ⊆ N. ψ is called efficient if
∑

i∈N ψi(v) = v(N). A player i ∈ N satisfying v(S) = v(S∪{i})

for all S ⊆ N \ {i} is called null. If ψi(v) = 0 whenever i is a null player in v, then

ψ satisfies the null player property. Players i, j ∈ N with v(S ∪ {i}) = v(S ∪ { j}) for all

S ⊆ N \ {i, j} are called equivalent. ψ is symmetric if ψi(v) = ψ j(v) whenever i, j ∈ N are

equivalent in v.

Denote the set of all permutations of N by Sn and let Pπi be the set of all agents that

precede i in order π ∈ Sn. Then the Shapley value ϕ is defined by

ϕi(v) =
1
n!
·

∑
π∈Sn

[
v
(
Pπi ∪ {i}

)
− v

(
Pπi

)]
for all i ∈ N. (1)

This can also be written and more efficiently be computed as

ϕi(v) =
∑

S⊆N\{i}

|S|! · (n − |S| − 1)!
n!

· [v(S ∪ {i}) − v(S)] , (2)

i.e., by summing only over 2n−1 coalitions instead of n! permutations. Shapley (1953)

proved that ϕ is the unique value that satisfies efficiency, linearity, symmetry, and the
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null player property.

Shapley also gave eq. (1) a roll call interpretation: assume that all players consent

to cooperate one after the other. Given an ordering π ∈ Sn, player i’s effect on the joint

surplus at the time when i decides is v
(
Pπi ∪ {i}

)
− v

(
Pπi

)
. Considering all orderings to

be equiprobable and taking expectations gives eq. (1).

Shapley and Shubik (1954, p. 789) mentioned for simple games that one can

equivalently arrive at ϕi(v) assuming all players vote “no”. If a player decides not to

cooperate in a coalitional game, then formation of the grand coalition N is blocked; the

player rescinds some surplus that might potentially be created. At the time of choosing

not to cooperate, the size of this destructive effect of player i’s non-cooperation is

v
(
N \ Pπi

)
− v

(
N \

(
Pπi ∪ {i}

))
= v∗

(
Pπi ∪ {i}

)
− v∗

(
Pπi

)
, (3)

where v∗(S) := v(N)− v(N \ S) for all S ⊆ N defines the dual game of v and ϕ(v∗) = ϕ(v).

Allowing cooperation (“yes”) by some players and non-cooperation (“no”) by

others gives rise to a generalized roll call model that was introduced by Mann and

Shapley (1960, p. 4; 1964, p. 153) and taken up by Felsenthal and Machover (1996): an

ordering π of players is determined; each player i ∈ N is called in order; when called,

i decides either to cooperate or not. Denoting the resulting final sets of cooperators or

supporters of a motion by S and the non-cooperators by S := N \ S, the actual surplus

created is v(S); the potential surplus rescinded is v∗(S) = v(N) − v(S). A particular

instance of a roll call will be referred to as R = (π,S) for π ∈ Sn and S ∈ 2N.

To assess the effect of a given player i in this process of (non-)creation in game v,

let Y(R, i) denote the set of cooperative players j ∈ S that precede player i. Similarly,

let N(R, i) collect all uncooperative players j ∈ S that precede i. We can then define

the marginal contribution of player i in roll call R for game v as

M(v,R, i) =

 v(Y(R, i) ∪ {i}) − v(Y(R, i)) if i ∈ S,

v∗(N(R, i) ∪ {i}) − v∗(N(R, i)) if i ∈ S.
(4)

For a simple game v, M(v,R, i) ∈ {0, 1} and M(v,R, i) = 1 if and only if player i is pivotal

in R: fate of a given proposal is still open before i’s vote but sealed by i’s decision.

Player i’s overall effect or power in game v can be captured by computing its

expected marginal contribution for an appropriate distribution over roll calls. We stay

in line with eq. (1) by presuming that orderings are drawn independently from the
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uniform distribution on Sn. However, we define value ϕp by

ϕp
i (v) =

1
n!

∑
π∈Sn

∑
S∈2N

p(S) ·M(v, (π,S), i) for i ∈ N (5)

for an arbitrary probability distribution p on 2N, i.e., requiring only p(S) ≥ 0 for all

S ∈ 2N and
∑

S∈2N p(S) = 1. Cooperation of players thus neither needs to be complete

with p(N) = 1, nor independent with p(S) =
∏

i∈S xi
∏

i<S(1 − xi) for xi ∈ [0, 1].

3 Results

Proposition 1 Value ϕp is linear, efficient, and satisfies the null player property for every

probability distribution p.

Proof The null player property is obvious from the definition. Linearity follows from

recalling that v∗(N(R, i)∪ {i})− v∗(N(R, i)) = v(N \N(R, i))− v(N \ (N(R, i)∪ {i})). So ϕp

is a linear combination of terms that are linear in v. For efficiency, first observe that

n∑
i=1

M(v,R, i) = v(S) − v(∅) + v∗(S) − v∗(∅) = v(N) − v(∅) = v(N) (6)

for any R ∈ Sn × 2N given the telescope sum behavior of
∑n

i=1 M(v,R, i). Second,

|Sn| = n! and
∑

S∈2N p(S) = 1. �

Random variables X1, . . . ,Xn are called exchangeable or symmetrically dependent if the

n! permutations (Xk1 , . . . ,Xkn) all have the same n-dimensional probability distribution

(see, e.g., Feller 1971, sec. 7.4). Applied to votes or binary cooperation choices, which

ϕp treats as random variables, this is equivalent to p(S) = p(S′) whenever |S| = |S′|, i.e.,

the probability of a particular partition of N into cooperators S and non-cooperators S

depends only on the number of (non-)cooperators rather than their identities.

Proposition 2 If players’ cooperation choices are exchangeable under p then ϕp is symmetric.

Proof Let κ denote the permutation that swaps players i and j and define κ(R) =

(κ(π), κ(S)) for any given roll call R = (π, d). If i and j are equivalent then M(v,R, i) =
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M(v, κ(R), j) for all R. Exchangeability implies p(S) = p(κ(S)). Hence

ϕp
i (v) =

1
n!

∑
π∈Sn

∑
S∈2N

p(S) ·M(v, (π,S), i) =
1
n!

∑
π∈Sn

∑
S∈2N

p(κ(S)) ·M(v, κ(π,S), j) (7)

=
1
n!

∑
π′∈Sn

∑
S′∈2N

p(S′) ·M(v, (π′,S′), j) = ϕp
j (v).

�

Proposition 1 and the characterization ofϕ by Shapley (1953) then give the generaliza-

tion of Felsenthal and Machover’s (1996) result by Hu (2006, Prop. 4) as an immediate

corollary: if players’ cooperation choices are exchangeable under p then ϕp(v) = ϕ(v)

for all coalitional games v.1 We here show that the converse holds too:

Proposition 3 If ϕp is symmetric then players’ cooperation choices are exchangeable under p.

Proof We need to prove that |S| = |S′| ⇒ p(S) = p(S′) if ϕp is symmetric. This is satisfied

trivially if n = 1, S = ∅, or S = N since then S = S′. So consider n ≥ 2, S ∈ 2N
\ {∅,N}

and S , S′. The symmetric difference S∆S′ := {i ∈ N : i < S ∩ S′} contains between

2 and 2 · |S| members. But there always exists a finite path (X1, . . . ,Xr) with X1 = S

and Xr = S′ such that Xl and Xl+1 differ by just one player i ∈ Xl being replaced by

some j < Xl, i.e., Xl∆Xl+1 = {i, j}. To prove the claim, it therefore suffices to show that

symmetry of ϕp implies p(X ∪ {i}) = p(X ∪ { j}) for every set X ⊆ N \ {i, j} and i , j ∈ N.

Fix any such set X ⊆ N \ {i, j} and let us consider the game

vX =
∑

{i, j}⊆T⊆N

λT,X · uT, (8)

where λT,X = M−1
X,(T\{i, j}) invokes the inverse matrix M−1 specified as follows:

Lemma 1 Let M be the 2m
× 2m matrix M defined by MR,S = 1

1+|R\S| for all R,S ⊆ G, where G

is a set of cardinality m. Then M’s inverse M−1 is given by

M−1
R,S =

(
m + 1

m + |R \ S|

)
· (−1)|S∆R|. (9)

Proof of Lemma 1 is provided in the appendix. Game vX is chosen such that its

coordinates λT,X in the unanimity game basis {uT} of the space of coalitional games

1A special case of Hu’s result, namely ϕp(v) = ϕ(v) if p(S) = 2−n for all S ⊆ N, was published by
Bernardi and Freixas (2018). A combinatorial proof of Hu’s result also is contained in Kurz (2016).
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satisfy

∑
{i, j}⊆T⊆N

λT,X ·
1

1 + |(T \ {i, j}) \ S|
= M−1

X,(T\{i, j}) ·M(T\{i, j}),S =

0, S , X,

1, S = X
(10)

for any given set S ⊆ N \ {i, j}. This follows from Lemma 1 using G = N \ {i, j} and

R = T \ {i, j}. Since vX is a linear combination of unanimity games uT in that i and j are

equivalent, they are equivalent in vX.

For any unanimity game uT with i, j ∈ T, value ϕp
i (uT) captures pivotality of i in

two situations: if i ∈ S, then i is pivotal in roll call R = (π,S) iff all players in T vote

“yes” (so T ⊆ S) and i is the last member of T to be called; if i < S, then player i is

pivotal iff i is the first member of T to be called. If we divide the latter roll calls with

i < S according to whether j ∈ S or j < S, we have

ϕp
i (uT) =

∑
T⊆S⊆N

1
|T|
· p(S) +

∑
S⊆N\{i, j}

1
|T \ S|

· p(S) +
∑

S⊆N\{i, j}

1
|T \ S| − 1

· p(S ∪ { j}). (11)

Symmetry of ϕp and linearity (Prop. 1) imply

ϕp
i (vX) =

∑
{i, j}⊆T⊆N

λT,X · ϕ
p
i (uT) =

∑
{i, j}⊆T⊆N

λT,X · ϕ
p
j (uT) = ϕp

j (vX). (12)

The expressions for ϕp
j (uT) analogous to eq. (11) involve identical first and second

summands. Cancelling these in eq. (12) yields

∑
{i, j}⊆T⊆N

∑
S⊆N\{i, j}

λT,X ·
1

|T \ S| − 1
·p(S∪{ j}) =

∑
{i, j}⊆T⊆N

∑
S⊆N\{i, j}

λT,X ·
1

|T \ S| − 1
·p(S∪{i}). (13)

Changing the order of summation, noting |T \ S| − 1 = 1 + |T \ S \ {i, j}| if {i, j} ⊆ T, and

invoking eq. (10) reduces this to p(X ∪ { j}) = p(X ∪ {i}). This proves the claim. �

As a direct corollary to Propositions 1–3 and Shapley (1953), we obtain a full

characterization of when the Shapley value has a roll call interpretation:

Theorem 1 ϕp(v) = ϕ(v) for all coalitional games v if and only if players’ cooperation choices

are exchangeable under p.

It is clear from the proof of Proposition 3 that coincidence of ϕp and ϕ in Theorem 1

could be restricted to any subclass of games which includes basis {uT}, such as simple

games.
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The marginal contribution of player i in roll call R defined in eq. (4) is key to

interpreting ϕp
i (v). It is possible to give rather general economic meaning to it in terms

of a player’s effect on both the created and the rescinded surplus associated with

formation of a coalition S ⊆ N.

To us the roll call interpretation of the Shapley value is most appealing for simple

voting games. Then, for a given joint distribution p that describes the “yes”-or-“no”

inclinations of voters and considering uniformly random sequences of players being

called, ϕp
i (v) is the probability of player i being pivotal: either conclusively passing

the proposal or putting the final nail in its coffin. Pivot probabilities are widely

applied in order to assess how given voting rules translate into a distribution of voting

power in various decision bodies (e.g., shareholder meetings, the US Electoral College,

EU Council of Ministers, IMF Board of Directors, etc.; cf. Napel 2019). They also are

of interest in other environments that involve binary variables, such as in reliability

analysis of components or factors whose functionality is critical to a technical system

or success of a project.

Theorem 1 characterizes all scenarios such that the Shapley value captures players’

pivot probabilities. These include the textbook case of all players voting “yes” as well

as independent votes with a probability x ∈ [0, 1] for “yes”. But they go considerably

beyond: the Shapley value equals pivot probabilities in roll calls if and only if votes

are exchangeable.

Appendix

Proof of Lemma 1

The proof draws on the following two combinatorial claims with n ∈ {0, 1, 2, . . .}:

Claim 1
n∑

k=0

(
n
k

)
· (−1)k =

1 if n = 0,

0 if n ≥ 1.

Proof This follows from
∑0

k=0
(0

k

)
· (−1)k =

(0
0

)
= 1 and the binomial theorem, i.e.,

0 = (1 − 1)n =
∑n

k=0
(n

k

)
· (−1)k for n ≥ 1. �

Claim 2

(a)
n∑

k=0

(
n
k

)
·

(−1)k

k + 1
=

1
n + 1

,

8



(b)
n∑

k=0

(
n
k

)
·

(−1)k

k + x
=

n!∏n
k=0(x + k)

for all x ∈ (0,∞),

(c)
n∑

k=0

(
n
k

)
·

(−1)k

k + 1 + x
=

n!∏n
k=0(1 + x + k)

for all x ∈ (−1,∞).

Proof Consider the following polynomial of degree at most n

f (x) =

n∑
k=0

(
n
k

)
· (−1)k

·

∏
0≤ j≤n : j,k

(x + 1 + j). (14)

For every i ∈ {0, 1, . . . ,n}we have

f (−i − 1) =

(
n
i

)
· (−1)i

·

∏
0≤ j≤n : j,i

(x + 1 + j) =

(
n
i

)
· (−1)i

· (−1)ii! · (n − i)! = n! (15)

since each product in eq. (14) contains one factor ( j − i) = 0 when k , i. A polynomial

of degree at most n that equals n! for n + 1 distinct x must be constant; so f (x) = n!.

Part (c) then follows from division by
∏n

k=0(1 + x + k). Setting x = 0 in part (c) yields

(a). Part (b) follows from (c) by a transformation of variable. �

Now consider matrices M and M−1 with

MR,S =
1

1 + |R \ S|
and M−1

R,S =

(
m + 1

m + |R \ S|

)
· (−1)|S∆R| (16)

for all R,S ⊆ G = {1, . . . ,m} and let us show that
(
M ·M−1

)
R,S

=
∑

U⊆G MR,U ·M−1
U,S equals

the 2m
× 2m-identity matrix. All terms involving M−1

U,S with |U \ S| ≥ 2 vanish since(m
k

)
= 0 for k > m. The remaining terms either involve U ⊆ S with |U \ S| = 0 (implying( m+1

m+|U\S|

)
= m + 1); or U such that |U \S| = 1 implying

( m+1
m+|U\S|

)
= 1 and |U∆S| = 1 + |S \U|.

So (
M ·M−1

)
R,S

=
∑
U⊆S

m + 1
1 + |R \U|

· (−1)|S\U| +
∑

U⊆G : |U\S|=1

−1
1 + |R \U|

· (−1)|S\U|

=
∑
U⊆S

m + 1
1 + |R \U|

· (−1)|S\U| +
∑
U⊆S

∑
l∈G\S

−1
1 + |R \ (U ∪ {l})|

· (−1)|S\U|(17)

Let us use the abbreviations a = |R ∩ S| and b = |S \ R|, so that a + b = |S|. With this we
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compute

∑
U⊆S

m + 1
1 + |R \U|

· (−1)|S\U|

=

a∑
i=0

b∑
j=0

(
a
i

)(
b
j

)
·

m + 1
1 + |R| − i

· (−1)|S|−i− j

=

a∑
i=0

(
a
i

)
·

m + 1
1 + |R| − i

· (−1)|S|−i
·

 b∑
j=0

(
b
j

)
· (−1) j

 (18)

and ∑
U⊆S

∑
l∈G\S

−1
1 + |R \ (U ∪ {l})|

· (−1)|S\U|

=
∑
l∈G\S

a∑
i=0

b∑
j=0

(
a
i

)(
b
j

)
·

−1
1 + |R \ {l}| − i

· (−1)|S|−i− j

= −

∑
l∈G\S

a∑
i=0

(
a
i

)
·

1
1 + |R \ {l}| − i

· (−1)|S|−i
·

 b∑
j=0

(
b
j

)
· (−1) j

 . (19)

If b > 0, corresponding to S * R, Claim 1 implies
(
M ·M−1

)
R,S

= 0

It remains to consider b = 0, corresponding to S ⊆ R. Claim 1 then implies(∑b
j=0

(b
j

)
· (−1) j

)
= 1, which simplifies expressions (18) and (19). The case |U \ S| = 1

captured by (19) splits into x := |R \ S| subcases where l ∈ G \ S is member of R, and

m − |S| − x subcases where l is neither member of S nor of R. Noting, moreover, that

|R| = x + |S|we can use this case distinction to write (17) as

(
M ·M−1

)
R,S

=

|S|∑
i=0

(
|S|
i

)
·

(m + 1) · (−1)|S|−i

1 + x + |S| − i
−

|S|∑
i=0

(
|S|
i

)
·

(m − |S| − x) · (−1)|S|−i

1 + x + |S| − i

−

|S|∑
i=0

(
|S|
i

)
·

x · (−1)|S|−i

x + |S| − i

=

|S|∑
i=0

(
|S|
i

)
·

(|S| + x + 1) · (−1)|S|−i

1 + x + |S| − i
−

|S|∑
i=0

(
|S|
i

)
·

x · (−1)|S|−i

x + |S| − i

= (|S| + x + 1) ·
|S|∑

k=0

(
|S|
k

)
·

(−1)k

1 + x + k
− x ·

|S|∑
k=0

(
|S|
k

)
·

(−1)k

x + k
. (20)

For x = 0, i.e., S = R, Claim 2(a) then gives
(
M ·M−1

)
R,R

= 1. For x > 0, i.e., S ( R,
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Claims 2(b) and 2(c) give

(
M ·M−1

)
R,S

= (|S| + x + 1) ·
m!∏

|S|
k=0(1 + x + k)

− x ·
m!∏

|S|
k=0(x + k)

= 0. (21)

In summary, we have (
M ·M−1

)
R,S

=

1 if R = S,

0 otherwise.
(22)

�
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