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ABSTRACT. Members of a shareholder meeting or legislative committee
have greater or smaller voting power than meets the eye if the nucleolus of
the induced majority game differs from the voting weight distribution. We
establish a new sufficient condition for the weight and power distributions
to be equal; and we characterize the limit behavior of the nucleolus in case
all relative weights become small.
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1. INTRODUCTION

Among all individually rational and efficient payoff vectors in a game v with trans-
ferable utility, the nucleolus selects a particularly stable one. It quantifies each
coalition’s dissatisfaction with a proposed vector x as the gap between the coali-
tion’s worth v(S) and the surplus share

∑
i∈S xi that is allocated to members of

S ⊆ N ; then it selects the allocation x∗ which involves lexicographically minimal
dissatisfaction. In contrast to other prominent point solutions in cooperative game
theory, such as the Shapley value, x∗ is guaranteed to lie in the core of game (N, v)

whenever that is non-empty.
Even before the final version of Schmeidler’s article which established the defini-

tion, existence, uniqueness, and continuity of the nucleolus was published in 1969,
Peleg (1968) had applied it to weighted majority games (WMG). In these games the
worth of a coalition S of players is either 1 or 0, i.e., S is either winning or losing,
and there exists a non-negative quota-and-weights representation [q;w1, . . . , wn]

such that v(S) = 1 iff
∑

i∈S wi ≥ q. The weight vectors that constitute a rep-
resentation of a given WMG v for some quota q form a non-singleton convex set
R(v).

Peleg highlighted a property of constant-sum WMGs with a homogeneous rep-
resentation, i.e., one where total weight of any minimal winning coalition equals
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q: the nucleolus x∗ of such a WMG v is contained in R(v), i.e., it is also a rep-
resentation.1 Despite this early start, the relation between voting weights and the
nucleolus of weighted majority games – constant-sum or not, homogeneous or in-
homogeneous – has to the best of our knowledge not been studied systematically so
far. This paper is a first attempt to fill this gap.

Discrepancies between weights and the nucleolus matter because the nucleolus
is an important indicator of influence in collective decision bodies. It emerges as
an equilibrium price vector in models that evaluate voters’ attractiveness to com-
peting lobbying groups (see Young 1978; Shubik and Young 1978); more recent
theoretical work by Montero (2005, 2006) has established it as a focal equilibrium
prediction for strategic bargaining games with a majority rule.2 So large differences
between a voter i’s weight wi and nucleolus x∗i can mean that the real power distri-
bution in a decision body such as a shareholder meeting is hidden from the casual
observer. This intransparency can be particularly problematic for political decision
bodies, where voting weight arrangements affect the institution’s legitimacy.3

This paper investigates absolute and relative differences between players’ rela-
tive voting weights as defined by vote shares in an assembly, electoral college, etc.
and the nucleolus of the implied WMG. We determine an upper bound on their
‖ · ‖1-distance which depends only on quota and maximum weight in a given rep-
resentation in Lemma 1. The lemma allows to conclude that if the relative weight
of every individual voter in player set {1, . . . , n} tends to zero, then the ratio x∗i /x

∗
j

of two nucleolus components converges to wi/wj for all regular voters i and j as
n → ∞ (Prop. 1). This complements analogous limit results in the literature on
the Shapley value, the Banzhaf value and voter pivotality on intervals (see Ney-
man 1982; Lindner and Machover 2004; Kurz et al. 2013) as well as for stationary
equilibrium payoffs in legislative bargaining games à la Baron-Ferejohn (see Sny-
der et al. 2005). We also establish a new sufficient condition for the nucleolus to
1A WMG (N, v) is called constant-sum if for any S ⊆ N either v(S) = 1 or v(NrS) = 1. S ⊆ N
is a minimal winning coalition (MWC) if v(S) = 1 and v(T ) = 0 for any T ⊂ S.
2Corresponding experimental lab evidence is mixed; see Montero et al. (2008). Non-cooperative
foundations of the nucleolus for other than majority games have been given, e.g., by Potters and Tijs
(1992) and Serrano (1993, Serrano (1995).
3See Le Breton et al. (2012) for nucleolus-based power analysis of the European Union’s Council;
an early-day weight arrangement meant that Luxembourg had a relative voting weight of 1/17 but
zero voting power. – In general, the power-to-weight ratio can differ arbitrarily from 1. For instance,
the nucleolus of the WMG with representation [0.5; (1− ε)/2, (1− ε)/2, ε] is x∗ = (1/3, 1/3, 1/3)
for any ε ∈ (0; 0.5).
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coincide with given relative weights (Prop. 2). It implies that a finite number of
replications brings about full coincidence for any given WMG.

2. NUCLEOLUS

Consider a WMG (N, v) with representation [q;w1, . . . , wn]. Using notation x(S) =∑
i∈S xi, a vector x ∈ Rn with xi ≥ v({i}) and x(N) = v(N) is called an imputa-

tion. For any coalition S ⊆ N and imputation x, call e(S, x) = v(S)−x(S) the ex-
cess of S at x. It can be interpreted as quantifying the coalition’s dissatisfaction and
potential opposition to an agreement on allocation x. For any fixed x let S1, . . . , S2n

be an ordering of all coalitions such that the excesses at x are weakly decreasing,
and denote these ordered excesses by E(x) =

(
e(Sk, x)

)
k=1,...,2n

. Imputation x is
lexicographically less than imputation y if Ek(x) < Ek(y) for the smallest compo-
nent k with Ek(x) 6= Ek(y). The nucleolus of (N, v) is then uniquely defined as
the lexicographically minimal imputation.4

As an example, consider (N, v) with representation [q;w] = [8; 6, 4, 3, 2]. The
nucleolus can be computed as x∗ = (2/5, 1/5, 1/5, 1/5) by solving a sequence of
linear programs – or by appealing to the sufficient condition of Peleg (1968) after
noting that the game is constant-sum and permits a homogeneous representation
[q′;w′] = [3; 2, 1, 1, 1]. Denoting the normalization of weight vector w by w̄, i.e.,
w̄ = w/

∑
wi, the respective total differences between relative weights and the

nucleolus are ‖w̄ − x∗‖1 = 2/15 for the first and ‖w̄′ − x∗‖1 = 0 for the second
representation (with ‖x‖1 =

∑
|xi|).

3. RESULTS

Saying that representation [q;w] is normalized if w = w̄, we have:5

4Schmeidler’s (1969) original definition did not restrict the considered vectors to be imputations but
is usually specialized this way. The set of imputations that minimize just the largest excess, E1(x),
is called the nucleus of (N, v) by Montero (2006). Our results are stated for the nucleolus but apply
to every element of the nucleus: both coincide under the conditions of Prop. 2; Lemma 1 and Prop. 1
generalize straightforwardly.
5All proofs are provided in the Mathematical Appendix.
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Lemma 1. Consider a normalized representation [q;w] with 0 < q < 1 and w1 ≥

· · · ≥ wn ≥ 0 and let x∗ be the nucleolus of this WMG. Then

(1) ‖x∗ − w‖1 ≤
2w1

min{q, 1− q}
.

If we consider a sequence {({1, . . . , n}, v(n))}n∈N of n-player WMGs with rep-
resentations [q(n);w(n)] such that the normalized quota q̄(n) is bounded away from
0 and 1 (or, more generally, 0 and 1 are no cluster points of {q̄(n)}n∈N), and each
player i’s normalized weight w̄(n)

i vanishes as n→∞ then Lemma 1 implies

(2) lim
n→∞

‖x∗(n) − w̄(n)‖1 → 0.

Convergence to zero of the total difference between nucleolus components x∗(n)i

and relative voting weights w̄(n)
i does not yet guarantee that the nucleolus is asymp-

totically proportional to the weight vector, i.e., that each ratio x∗(n)i /x
∗(n)
j converges

to wi/wj . This can be seen, e.g., by considering

(3)
[
q(n);w(n)

]
=

[
2n− 1

2
; 1, 2, . . . , 2︸ ︷︷ ︸

n−1

]
.

The nucleolus either equals
(
0, 1

n−1 , . . . ,
1

n−1

)
or
(
1
n
, . . . , 1

n

)
depending on whether

n is even or odd; ratio x∗(n)1 /x
∗(n)
2 6= 1

2
alternates between 0 and 1.

But such pathologies are ruled out for players i and j whose weights are “non-
singular” in the weight sequence

{
w(n)

}
n∈N. Specifically, denote the total number

of players i ∈ {1, . . . , n} with an identical weight of w(n)
i = ω by mω(n). We say

that a player j with weight wj is regular if mwj
(n) · w̄(n)

j is bounded away from 0
by some constant ε > 0. Lemma 1 then implies:6

Proposition 1. Consider a sequence
{[
q(n); (w1, . . . , wn)

]}
n∈N with correspond-

ing normalized quotas that exclude 0 and 1 as cluster points and with normalized
weights satisfying w̄(n)

k ↓ 0 for every k ∈ N as n→∞. Then the nucleolus x∗(n) of

6We assume w(n)
j = wj in our exposition. Adaptations to cases where q(n) and w(n)

j vary in n are
straightforward. The essential regularity requirement is that a voter type’s aggregate relative weight
does not vanish.
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the WMG represented by
[
q(n); (w1, . . . , wn)

]
satisfies

(4) lim
n→∞

x
∗(n)
i

x
∗(n)
j

=
wi

wj

for any regular players i and j.

For a considerable class of games, asymptotic equality of nucleolus and normal-
ized weights can be strengthened to actual equality.7 Namely, for a fixed n-player
WMG with representation [q;w1, . . . , wn] let mω denote the number of players that
have weight ω; so

(5) m◦ = min
i∈{1,...,n}

mwi
≥ 1

is the number of occurrences of the rarest weight in vector w = (w1, . . . , wn).

Proposition 2. Consider a WMG representation [q;w] with integer weights w1 ≥
. . . ≥ wn ≥ 0 and normalization [q̄; w̄]. Denoting the number of numerically
distinct values in w by 1 ≤ t ≤ n, the nucleolus x∗ of this WMG satisfies

(6) x∗ = w̄ if min{q̄, 1− q̄} ·m◦ > 2tw1
2.

The proposition refers to integer weights. Even though it is not difficult to obtain
an integer representation from any given [q;w] with non-integer values, this is an
important restriction. In particular, it is not possible to rescale a given weight vector
w so as to make the maximal weight w1 arbitrarily small.8

The right-hand side of the inequality in condition (6) is smaller, the smaller the
number of different weights in the representation, and the smaller the involved inte-
gers (particularly w1). Similarly, the left-hand side is larger, the greater the number
of occurrences of the rarest weight. It follows that condition (6) is most easily met

7Non-null players have a positive nucleolus value in this case – in contrast to WMGs in general. So
we implicitly establish a sufficient condition for wi > 0⇒ x∗i > 0.
8Note also that inequality (6) must be violated if two interchangeable players of (N, v) have differ-
ent weights because x∗ = w̄ would then contradict the symmetry property of the nucleolus. So as a
subtle implication of the integer requirement, weight changes which would destroy a given symmet-
ric or ‘type-preserving’ representation and satisfy (6) are impossible. Another way to look at this is
to begin with a WMG’s representation where wi 6= wj for interchangeable players i and j and then
to replicate all players and weights: after enough replications the two players (types) i and j must
lose their interchangeability.



6 SASCHA KURZ?, STEFAN NAPEL†‡, AND ANDREAS NOHN‡

when null players (where x∗i = 0 is known) are removed from the WMG in ques-
tion and a minimal integer representation is considered.9 This is automatically also
a homogeneous representation if any exists.

Our sufficient condition for x∗ = w̄ is, however, independent of the known
homogeneity-based one. The normalization of weights in [3; 2, 1, 1, 1] must, ac-
cording to Peleg (1968), coincide with the WMG’s nucleolus because the game
is constant-sum; but our condition (6) is violated. In contrast, the representation
[q;w] = [1500; 4, . . . , 4, 3, . . . , 3, 2, . . . , 2] of a 900-player WMG where each of the
t = 3 weight types occurs m◦ = 300 times satisfies our condition. Hence x∗ = w̄.
Since the game is inhomogeneous,10 Peleg’s finding does not apply.

The left-hand side in condition (6) equals at most half the number of occurrences
of the rarest weight, m◦, and the right-hand side is bounded below by 2. This,
first, implies that the condition cannot be met by WMGs where only one instance
of some weight type is involved. This limits Prop. 2’s applicability for small-scale
games such as [3; 2, 1, 1, 1]. But, second, it means that if we consider ρ-replicas
of any given n-player WMG with integer representation [q;w], i.e., a WMG with
quota ρq and ρ instances of any of the n voters in [q;w], then one can compute an
explicit number ρ̃ from (6) such that the nucleolus of the resulting ρn-player WMG
must coincide with the corresponding normalized weight vector for every ρ ≥ ρ̃.11

This observation echoes the coincidence result obtained by Snyder et al. (2005)
for WMG replicas under Baron-Ferejohn bargaining:12 at least in sufficiently large
majority games, voting weight and power are the same.

9Uniqueness and other properties of minimal integer representations of WMG are investigated by
Kurz (2012).
10Coalitions with (a) 300, 100, and 0, (b) 300, 0, and 150, or (c) 300, 1 and 149 players of weights
4, 3, and 2 are minimal winning, and cannot be made to have identical aggregate weights in any
representation [q′;w′].
11For simple majority games which involve equal numbers of voters with weight ω = 4, 3, and 2,
condition (6) calls for m◦ > 192. But x∗ = w̄ already holds after one replication of [5; 4, 3, 2], i.e.,
ρ ≥ 2. So tighter bounds might be obtained by different techniques than ours. However, surprising
sensitivity of x∗ to the game at hand cautions against too high expectations. For instance, x∗ = w̄
if w1 = . . . = w5 = 4 and either w6 = . . . = w11 = 1 or w6 = . . . = w13 = 1 with q̄ = 58%;
in contrast, x∗ = (1/5, . . . , 1/5, 0, . . . , 0) if w6 = . . . = w12 = 1. We thank Maria Montero for
suggesting this example.
12We thank an anonymous referee for pointing out to us that Snyder et al.’s Prop. 2 is in fact a corol-
lary to our Prop. 2, the uniqueness of SSPE payoffs recently established by Eraslan and McLennan
(2013), and Montero’s (2006) Prop. 7.
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MATHEMATICAL APPENDIX

Proof of Lemma 1. Define w(S) =
∑

i∈S wi and x∗(S) =
∑

i∈S x
∗
i . Let S+ =

{i ∈ N | x∗i > wi} and S− = {i ∈ N | x∗i ≤ wi}. We have w(S−) > 0 because
weights cannot exceed nucleolus values for all i ∈ N given w(N) = x∗(N) = 1.
If w(S−) = 1 then ‖x∗ − w‖1 = 0.

So let 0 < w(S−) < 1 and define 0 ≤ δ ≤ 1 by x∗(S−) = (1 − δ)w(S−). We
have x∗(S+) = w(S+) + δw(S−) and the respective substitutions in decomposition
‖x∗ − w‖1 =

∑
i∈S+(x∗i − wi) +

∑
j∈S−(wj − x∗j) yield

(7) ‖x∗ − w‖1 = 2δw(S−).

Let T be a MWC which is generated by starting with S = ∅ and successively
adding a remaining player i with minimal x∗i /w̄i until w(T ) ≥ q.

In case w(S−) ≥ q we then have x∗(T )/w(T ) ≤ x∗(S−)/w(S−) = 1 − δ.
Multiplying by w(T ), using q ≤ w(T ) ≤ q + w1 and finally δ ≤ 1 yields

(8) x∗(T ) ≤ (1− δ)w(T ) ≤ (1− δ)(q + w1) ≤ q(1− δ) + w1.

This and q ≤ w(T ) ≤ x∗(T ) yield δ ≤ w1/q. Applying this and w(S−) < 1 in
equation (7) gives ‖x∗ − w‖1 ≤ 2w1

q
.

In case w(S−) < q, note that moving from S− to T involves the weight ad-
dition w(T ) − w(S−) which comes with a nucleolus per weight unit of at most
x∗(S+)/w(S+). So

x∗(T ) = x∗(S−) + x∗(T\S−)

≤ (1− δ)w(S−) +
x∗(S+)

w(S+)
·
(
w(T )− w(S−)

)
≤ (1− δ)w(S−) +

x∗(S+)

w(S+)
·
(
q − w(S−) + w1

)
(9)

where the last inequality usesw(T ) ≤ q+w1. Rearranging with x∗(S+) = w(S+)+

δw(S−) and w(S−) = 1− w(S+) yields

x∗(T ) ≤ q +
w(S+) + δw(S−)

w(S+)
· w1 −

(1− q)δw(S−)

w(S+)
.(10)

Since δ ≤ 1 the right hand side of (10) is at most q+
(
w1−(1−q)δw(S−)

)
/w(S+).

So q ≤ x∗(T ) implies (1− q)δw(S−) ≤ w1. Hence ‖x− w‖1 ≤ 2w1

1−q . �
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Proof of Proposition 1. If x∗(n)i / w̄
(n)
i ≥ 1 + δ or x∗(n)i / w̄

(n)
i ≤ 1− δ then ‖x∗(n)−

w̄(n)‖1 ≥ δ ·mwi
(n) · w̄(n)

i ≥ δε for some ε > 0 if i is regular. But lim
n→∞

||x∗(n) −

w̄(n)||1 = 0 (Lemma 1). So lim
n→∞

x
∗(n)
i / w̄

(n)
i = 1 and hence

(11) 1 = lim
n→∞

x
∗(n)
i

w̄
(n)
i

·
w̄

(n)
j

x
∗(n)
j

= lim
n→∞

x
∗(n)
i

x
∗(n)
j

· wj

wi

if i and j are regular.

�

Proof of Proposition 2. It suffices to prove the result in case wn > 0 because
wi = 0 directly implies x∗i = 0. We may also assume 0 < q̄ < 1. For each
k ∈ {1, . . . , t} let ωk denote the normalized weight of a voter i with type k (i.e.,
w̄i = ωk) and, with slight abuse of notation, let x∗k be this voter/type’s nucleolus.
Define rk = x∗k/ωk and w.l.o.g. assume r1 ≥ . . . ≥ rt. Let a denote the largest
index such that r1 = ra and b be the smallest such that rb = rt. The claim is true if
a ≥ b. So we suppose a < b and establish a contradiction by showing that we can
construct an imputation x∗∗ with maximum excess E1(x

∗∗) smaller than E1(x
∗).

Writing ε = 1
2
·min{q̄, 1− q̄} and nk = mωk

, the premise and t, w1 ≥ 1 imply

(12) w1 ≤ tw1
2 < εm◦ ≤ εnk

for each k ∈ {1, . . . , t}. Considering ωk-weighted sums of (12) we obtain

(I)
∑
k≤a

w1ωk < ε
∑
k≤a

nkωk and (II)
∑
k≥b

w1ωk < ε
∑
k≥b

nkωk.

Moreover, we have

(III)
∑
k<b

w1ωk < ε
∑
k≥b

nkωk and (IV) w̄1 +
∑
k>a

w1ωk < ε
∑
k≤a

nkωk.

Inequality (III) follows from

(13)
∑
k<b

w1ωk < tw1w̄1 =
tw1

2

w(N)
<

εm◦

w(N)
≤ ε

∑
k≥b

nkωk

using 1/w(N) ≤ ωk ≤ w̄1 and (12). Similarly, (IV) follows from

(14) w̄1 +
∑
k>a

w1ωk ≤ w̄1 + (t− 1)w1w̄1 ≤ t
w1

2

w(N)
< εm◦

1

w(N)
≤ ε

∑
k≤a

nkωk.
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Let nT
k denote the number of k-type voters in a coalition T ⊆ N and define

(15) D(T ) =

∑
k≤a

nT
k ωk∑

k≤a
nkωk

and I(T ) =

∑
k≥b

nT
k ωk∑

k≥b
nkωk

.

D(T ) is the share of the total weight of the a “most over-represented” types (all
having maximal nucleolus-to-relative weight ratio x∗1/ω1) which they contribute in
coalition T . Similarly, I(T ) is the respective share for the t − b + 1 “most under-
represented” types.

Given a suitably large coalition S ⊆ N , replacing wh members of type k –
all with absolute weight wk – by wk players of type h yields a coalition S ′ with
w(S ′) = w(S). But if rk > rh, such replacement yields x∗(S ′) < x∗(S). Thus,
for a MWC T with maximum excess at x∗, i.e., with excess 1 − x∗(T ) ≥ v(S) −
x∗(S) for all S ⊆ N , there are no k, h with rk > rh such that (i) w1 or more
type k-players belong to T and (ii) w1 or more type h-players do not belong to T .
This consideration restricts the numbers of members nT

k of players of type k in any
MWC T with maximum excess. There are three cases, for each of which we show
I(T )−D(T ) > 0:

Case 1:: nT
k < w1 for all types 1 ≤ k < b.

Then the relative weight
∑

k≤a n
T
k ωk in T of the most over-represented

types is less than
∑

k≤aw1ωk. So inequality (I) implies D(T ) < ε. Since
T is a winning coalition, the weight

∑
k≥b n

T
k ωk in T of the most under-

represented types is greater than q̄−
∑

k<bw1ωk. Due to (III) and
∑

k≥b nkωk ≤
1 we have I(T ) > q̄ − ε. So I(T )−D(T ) > q̄ − 2ε ≥ 0.

Case 2:: nT
k ≥ w1 for some 1 ≤ k ≤ a but nh−nT

h < w1 for all a < h ≤ t.13

Using that T is a MWC, the relative weight
∑

k≤a n
T
k ωk in T of the most

over-represented types is less than q̄+ w̄1−
∑

k>a (nk − w1)ωk in this case.
So inequality (IV) and

∑
k≤a nkωk ≤ 1 imply D(T ) < q̄+ε. Moreover, the

weight
∑

k≥b n
T
k ωk in T of the most under-represented types is greater than

13If Case 1 does not apply, there is a smallest index 1 ≤ k < b with nTk ≥ w1. Assume k ≤ a
first. Because rk > rh for all a < h < t, the number nh − nTh of h-types outside coalition T is
less than w1: otherwise the indicated replacement would yield a MWC T ′ with x∗(T ′) < x∗(T ),
contradicting the maximum-excess property of T. This is the description of Case 2. The remaining
Case 3 involves a < k < b where rk > rh for all b ≤ h ≤ t. Then, analogously, nh − nTh < w1

must hold.
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k≥b (nk − w1)ωk and inequality (II) implies I(T ) > 1 − ε. So I(T ) −

D(T ) > 1− q̄ − 2ε ≥ 0.
Case 3:: nT

l < w1 for all 1 ≤ l ≤ a and nT
k ≥ w1 for some a < k < b but

nh − nT
h < w1 for all b ≤ h ≤ t.

The relative weight
∑

l≤a n
T
l ωl in T of the most over-represented types

is then less than
∑

l≤aw1ωl. So inequality (I) implies D(T ) < ε. Sim-
ilarly, the total weight of the players of types b ≤ h ≤ t is greater than∑

h≥b (nh − w1)ωh. Inequality (II) then implies I(T ) > 1− ε and we have
I(T )−D(T ) > 1− 2ε > q̄ − 2ε ≥ 0.

Recall that x∗k ≥ wk for all 1 ≤ k ≤ a. So for sufficiently small σ > 0

(16) x∗∗k (σ) =


x∗k − σωk if 1 ≤ k ≤ a,

x∗k if a < k < b, and

x∗k + δσωk if b ≤ k ≤ t

with δ =
∑

k≤a nkωk/
∑

l≥b nlωl > 0 is an imputation. x∗∗k (σ)’s continuity implies
existence of σ > 0 so that no S with e(S, x∗) < E1(x

∗) has maximum excess at
x∗∗(σ). We fix such a value of σ and write x∗∗ = x∗∗(σ).

It then suffices to consider coalitions T ′ with maximum excess at x∗ in order to
show the contradiction E1(x

∗∗) < E1(x
∗). Such T ′ has to be winning, and for any

MWC T ⊆ T ′ it must be true that e(x∗, T ) = e(x∗, T ′) = E1(x
∗). Since T and T ′

both are winning we have e(x∗∗, T ′) ≤ e(x∗∗, T ) and

(17) E1(x
∗∗) = max{e(x∗∗, T ) : T is MWC and e(x∗, T ) = E1(x

∗)}.

Moreover, for every T on the right-hand side of equation (17)
(18)
e(x∗∗, T )−E1(x

∗) = e(x∗∗, T )− e(x∗, T ) = −σ ·
(
I(T )−D(T )︸ ︷︷ ︸

>0

)
·
∑
k≤a

nkωk < 0

implies e(x∗∗, T ) < E1(x
∗), so that E1(x

∗∗) < E1(x
∗). �
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