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1. Introduction

Power is one of the most important concepts in the social sciences, but difficult to quantify.

Attempts to measure specific aspects of it in particular contexts – notably voting bodies

that take “yes” or “no” decisions – have inspired numerous studies.1 Commonly, a model

of a given decision body is defined simply by a partition of all subsets of players into

winning and losing coalitions. But some contexts make it expedient to incorporate additional

information. Therefore, many specialized indices have been derived from baseline solutions

such as the Shapley or Banzhaf values (Shapley 1953; Banzhaf 1965). For instance, one line

of research takes into account that players belong to a priori unions which either support or

reject proposals as a bloc (pioneered by Aumann and Drèze 1974; Owen 1977). Another one,

which is followed here, investigates the assumption that coalitions can only form between

players that, in an abstract sense, can “communicate” with another. Namely, agents are

presumed to cooperate only if they are connected in a graph that reflects, for example,

ideological, social, or spatial proximity. This gives rise to games with restricted communication

or communication structure. Prominent solution concepts for these games include the Myerson

value (Myerson 1977) and the position value (Borm et al. 1992).

Identification of which value or power index is particularly satisfactory amongst the many

conceivable ones is not easy, even when one restricts attention to situations which can

plausibly be modeled as simple games without additional information. In determining

whether an index is suitable in a given context (or more suitable than another), the respective

axiomatic characterizations, probabilistic foundations, and possible interpretations play

an important role. Moreover, the monotonicity properties of a power index are commonly

regarded as a major criterion. They provide a first test of whether a candidate index

fits one’s basic intuition about power in the particular context. Specifically, consider a

weighted voting game [q; w1, . . . ,wn] with weights (w1, . . . ,wn) and quota q such that a coalition

S ⊆ {1, . . . , n} of players is winning if and only if the combined weight of the members of

S exceeds or equals q. It seems compelling to require that a power index is monotonic

in the following sense: if player i has weakly greater voting weight than player j, then a

plausible index should indicate weakly greater voting power for i. Satisfaction of this local

monotonicity – and a related global monotonicity property that compares a given player’s

power across games – are by many regarded as a sine qua non for sensible power measures

(see Felsenthal and Machover 1998, 245f). The default identification of more voting weight

with more voting power is problematic, however, whenever additional structure such as

procedural rules, a priori unions, or communication restrictions affect agents’ decision

making. Procedural advantage or a central political position can (over-)compensate low

voting weight.

This paper proposes adaptations of the conventional notions of local and global monotonicity

for power indices and values for games with restricted communication. We focus on

1See Felsenthal and Machover (2006) for a brief historical survey. Comprehensive overviews are given by
Felsenthal and Machover (1998) and Laruelle and Valenciano (2008).
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binary collective decisions, that is, situations in which any coalition can be classified as

either winning or losing, and weighted voting games in order to simplify our presentation.2

All definitions and results for monotonicities with respect to communication possibilities,

however, apply also to general superadditive TU games.

Possible restrictions of communication may reflect a variety of social, hierarchical, legal,

or technological constraints on the support which is necessary for a successful motion

or project, and possibly on the sequence in which coalitions can form. For example, a

linear communication graph could model three political parties that are ordered along a

left-right spectrum. Members of the left wing and the right wing parties are not literally

unable to speak to each other; they may very well pass a proposal jointly if both prefer

it to the status quo. However, a model that includes no link between them reflects the

presumption that they will never jointly support a proposal unless the centrist party does

so, too. In an abstract sense, they cannot “communicate” directly but only when being

connected by the centrists. In such examples, graph-constrained communication is a proxy

for cooperation with ideological friction in the tradition of Axelrod (1970). In other contexts,

a communication graph might capture actual physical constraints on cooperation (see

Ambec and Sprumont 2002 on sharing a river or Curiel et al. 1989 on sequencing situations).3

Real and virtual social networks have gained enormous scientific attention (see Goyal 2007,

Vega-Redondo 2007, and Jackson 2008 for overviews), and attest to implicit or explicit

restrictions on cooperation in contexts ranging from group buying to political insurrection

coordinated by SMS text messaging.

The straightforward monotonicity requirements alluded to for conventional weighted voting

games need to be adapted in such environments.4 Weight monotonicity should be confined

to players and games that,at least, are comparable in communication possibilities. Conversely,

additional monotonicity requirements with respect to communication possibilities should

relate players who have identical weights but can naturally be ordered in other respects. The

difficulty is to define notions of monotonicity that are, first, not too restrictive and therefore

trivial (e.g., requiring local monotonicity in weight only for players that have absolutely

identical communication possibilities). Second, they should not be so permissive as to

render all of the established indices non-monotonic (e.g., calling for monotonicity in weight

as soon as two players have the same number of links). Finally, it seems desirable that one

preserves some of the structural relationships that connect local and global monotonicity

properties on other domains (see Turnovec 1998; Alonso-Meijide et al. 2009).

2A weighted voting representation does not presuppose any actual voting. In a procurement context, say,
weights wi might reflect individual demands and quota q can represent the threshold for a given discount.
3Van den Brink et al. (2011) point to other examples in which communication graphs usefully structure potential
cooperation – assignment games (Shapley and Shubik 1972), for instance, in which sellers and buyers have to
coordinate on who buys from whom, and games in which banks share ATM networks (Bjorndal et al. 2004).
4See Holler and Napel (2004a, 2004b) for a general discussion of monotonicity when additional information
complements a standard weighted voting game.
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The monotonicity notions that we propose are meant to clarify and compare the behavior of a

wide range of indices, rather than to axiomatically characterize specific ones. For illustration,

we consider the Myerson value, the restricted Banzhaf value (Owen 1986), the position value,

and the average tree solution (Herings et al. 2008; 2010), which have received the greatest

attention in the literature on games with communication structure. Instructive examples of

how particular notions of monotonicity can be employed in axiomatic characterizations are

provided by Allingham (1975), Young (1985) or, for games with communication structure,

Hamiache (2011). For an in the general case too demanding global monotonicity requirement

(that a new link never harms any player), Slikker (2005b) has investigated the related question

of which restriction of the considered class of games guarantees that a given solution concept

behaves monotonically.

In section 2 we introduce our notation and basic definitions. Section 3 contains descriptions

of the mentioned solution concepts for games with restricted communication. In section 4

we devise and investigate monotonicity requirements concerning the weights of players,

and in section 5 we formalize the intuitive requirement that greater power be indicated for

players with “better connections”, i.e., superior communication possibilities. We comment

on relations to the measurement of centrality in social networks and conclude in section 6.

2. Preliminaries

2.1. Weighted Voting Games. A (monotone) simple game is a pair (N, v) where N = {1, . . . , n}

is the non-empty and finite set of players and the characteristic function v : 2N → {0, 1} defines

whether any coalition S ⊆ N is winning (v(S) = 1) or losing (v(S) = 0). It is required that (i)

the empty coalition ∅ is losing (v(∅) = 0), (ii) the grand coalition N is winning (v(N) = 1),

and (iii) v is monotone (S ⊆ T ⇒ v(S) ≤ v(T)). A simple game is called proper if any two

winning coalitions have a non-empty intersection, i.e., v(S) = 1 implies v(N\S) = 0. We call

a winning coalition S a minimal winning coalition (MWC) if every proper subcoalition T ⊂ S

is losing. Players who do not belong to any MWC are known as dummy or null players.

A weighted voting game is a simple game that can be represented by a pair [q; w], which consists

of (voting) weights w = (w1, . . . ,wn) and a quota q ≤
∑

wi such that v(S) = 1 ⇔
∑

i∈S wi ≥ q.

Throughout the paper we assume that q > 1
2

∑

i wi, which ensures properness. Not every

simple game allows for a representation [q; w], written as (N, v) = [q; w], while those which

do have many equivalent ones.5 We denote the set of all weighted voting games byW.

A power index f is a mapping that assigns an n-dimensional real-valued vector f (N, v) =

( f1(N, v), . . . , fn(N, v)) to each simple game (N, v), where fi(N, v) is interpreted as player i’s

power in game (N, v). The two most prominent power indices are the Shapley-Shubik index

5Taylor and Zwicker (1999) provide characterizations of those simple games which are weighted voting games.
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(SSI) (Shapley and Shubik 1954) and the Banzhaf index (BI) (Banzhaf 1965) defined by

(1) SSIi(N, v) ≡
∑

S⊆N\{i}

s!(n − s − 1)!

n!
(v(S ∪ {i}) − v(S)) , i = 1, . . . , n,

where s denotes the cardinality of S, and

(2) BIi(N, v) ≡
1

2n−1

∑

S⊆N\{i}

(v(S ∪ {i}) − v(S)) , i = 1, . . . , n.

They are restrictions of particular semivalues for general TU games – the Shapley value

(Shapley 1953) and the Banzhaf value (Owen 1975), respectively – to simple games. Semi-

values are weighted averages of a player’s marginal contributions to coalitions

(3) fi(N, v) ≡
∑

S⊆N\{i}

pS (v(S ∪ {i}) − v(S)) , i = 1, . . . , n,

where the weights pS depend on a coalition S only via its cardinality s and define a probability

distribution, i.e., pS = ps ≥ 0 with
∑n−1

s=0

(n−1
s

)

ps = 1 (see Weber 1988).

Some properties of power indices are widely considered as desirable on the domain of

simple or weighted voting games. For instance, a power index f satisfies the null player

property if it assigns zero power to null players in any simple game (N, v). Another property

pertains to possible symmetries: for given (N, v), players i and j are called symmetric if there

exists a permutation π on N which (i) maps i to j and (ii) under which v is invariant, i.e.,

v(S) = 1 ⇔ v(π(S)) = 1.6 In case of weighted voting games, this is equivalent to existence

of a representation (N, v) = [q; w] for which wi = w j. A power index f is called symmetric if

it assigns equal power fi(N, v) = f j(N, v) to symmetric players i and j in any given simple

game (N, v). On the domain of weighted voting games, a power index f is said to be locally

monotonic if for all (N, v) = [q; w] it holds that wi ≥ w j implies fi(N, v) ≥ f j(N, v). It is called

globally monotonic if for all (N, v) = [q; w] and (N, v′) = [q; w′] it holds that fi(N, v) ≥ fi(N, v
′)

if wi ≥ w′
i
, w j ≤ w′

j
for all j , i, and

∑

j w j ≥
∑

j w′
j
.7 If a power index f is symmetric, global

monotonicity of f implies local monotonicity of f . Semivalues, including SSI and BI, satisfy

all four properties.

2.2. Restricted Communication. A simple game with communication structure is a triplet

(N, v, g) where (N, v) is a simple game and g ⊆ gN ≡ {{i, j} | i, j ∈ N, i , j} is an unweighted and

undirected graph on N. In what follows we pay particular attention to weighted voting games

with communication structure or restricted communication, i.e., those cases where (N, v) ∈ W.

We denote the collection of all such games byWG. Two players i and j are able to cooperate

directly or to communicate in (N, v, g) if the link {i, j} between these two players is a member

6Identical marginal contributions of i and j, i.e., v(S ∪ {i}) = v(S ∪ { j}) for all S = i, j, are sufficient for this but
not necessary. Considering (N, v) with MWCs {1, 2, 3}, {2, 3, 4} and {3, 4, 5}, and permutation π(1, 2, 3, 4, 5) =
(5, 4, 3, 2, 1), one sees that 1 and 5 are symmetric. But their marginal contributions, e.g., to coalition {2, 3} differ.
7Global monotonicity is implied by Young’s (1985) notion of strong monotonicity for TU values.
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of graph g. Those players j that i can communicate with are collected in the set of neighbors

of player i, Ni(g) = { j | {i, j} ∈ g}.

Players i, j ∈ S are called connected in S by g if either i = j or if there exists a path in g

from i to j which stays in S, i.e., there are players k0, . . . , kl ∈ S such that k0 = i, kl = j, and

{k0, k1}, . . . , {kl−1, kl} ∈ g. Coalition S is connected by g if all players i, j ∈ S are connected in S

by g. The coalitions involving player i which are connected by g will be collected in the set

Ci(g) ≡ {S ⊆ N |S is connected on g and i ∈ S}.

Subset T ⊆ S is a component of S in g if it is connected by g and no T′ with T ⊂ T′ ⊆ S

is connected by g. Thus, g induces a unique partition S/g (say “S divided by g”) of any

coalition S into its components,

(4) S/g ≡ { { j | i and j connected in S by g} | i ∈ S}.

S/g = {S} if and only if S is connected by g. The full graph gN and the empty graph ∅ induce

the trivial partitions S/gN = {S} and S/∅ = {{i} | i ∈ S}, respectively. Another useful definition

is g|S, the restriction of g to coalition S given by

g|S ≡ { {i, j} | {i, j} ∈ g and i, j ∈ S}.

The assumption that two players i and j can cooperate directly in (N, v, g) only if they can

communicate, and hence can cooperate indirectly in a coalition only if that coalition is

connected, gives rise to a restricted game (N, v/g). Its characteristic function v/g is defined by

(5) v/g (S) ≡
∑

T∈S/g

v(T), S ⊆ N.

In other words, any coalition S is split into its components and the worth of S equals the total

worth of these subcoalitions.8 In those cases where no winning coalition of (N, v) is connected

by g, in particular also not the grand coalition N, the restricted game (N, v/g) is a null game

with v/g ≡ 0. In all other cases, the restricted game (N, v/g) induced by (N, v, g) ∈ WG is a

simple game in which a coalition is winning if and only if it contains a winning component in

g. A communication structure can thus be implicit in the specification of a standard simple

game. Note that (N, v/g) need not be a weighted voting game even though (N, v, g) ∈ WG.9

For the full graph gN, the restricted game induced by (N, v, gN) coincides with (N, v).

We call two players i and j symmetric in (N, v, g) ∈ WG if, for some representation (N, v) =

[q; w], there is a permutation π on N which (i) maps i to j and (ii) leaves weights w and

graph g invariant, i.e., for the permuted weights π(w) ≡ (wπ−1(k))k∈N and the permuted graph

8In non-proper simple games, several disjoint subcoalitions T ⊂ S might be winning. Since we have ruled out
this case by presuming q >

∑

i wi/2, we could replace
∑

v(T) by max v(T).
9Consider, e.g., (N, v) = [4; 2, 1, 1, 1, 2] and g = {{1, 2}, {2, 3}, {3, 4}, {4, 5}}. Then (N, v/g) has just two MWCs: {1, 2, 3}
and {3, 4, 5}. For any representation [q; w], we must have w1 + w2 + w3 ≥ q and w3 + w4 + w5 ≥ q. This implies
w3 +max(w1,w2) +max(w4,w5) ≥ q and hence existence of a third MWC – a contradiction.



6

π(g) ≡ {{π(k), π(l)} | {k, l} ∈ g} we have π(w) = w and π(g) = g.10 This necessitates, of course,

that players i and j have identical weights, i.e., wi = w j. Two players who are symmetric

in a weighted voting game with communication structure are necessarily symmetric in the

corresponding restricted game (in the sense of the definition in section 2.1).11

A value or power index for (games with) communication structures or restricted communi-

cation is a mapping f that assigns an n-dimensional real-valued vector f (N, v, g) =

( f1(N, v, g), . . . , fn(N, v, g)) to each weighted voting game with communication structure

(N, v, g) ∈ WG, where fi(N, v, g) is interpreted as player i’s power in game (N, v, g). Such f

satisfies symmetry (SYM) if fi(N, v, g) = f j(N, v, g) whenever players i and j are symmetric in

(N, v, g) ∈ WG.12 It satisfies component efficiency (CE) if
∑

i∈S fi(N, v, g) = v(S) for each S ∈ N/g

in any given (N, v, g) ∈ WG.

3. Selected Indices

3.1. Restricted Semivalues. The literature on simple games often explicitly distinguishes

between the Banzhaf value and the Banzhaf index, or the Shapley value and its restriction

to simple games, the Shapley-Shubik index. We make no such distinction here and refer

to a “value” even when the corresponding mapping is considered on the domain of simple

games with communication structures. The first value concept that has been proposed and

axiomatized specifically for situations with restricted communication is the Myerson value

MV (Myerson 1977). Used as a power index for games with communication structures

(N, v, g), it assigns the Shapley-Shubik index of the corresponding restricted game (N, v/g)

to each player, i.e.,

(6) MV(N, v, g) ≡ SSI(N, v/g).

In the special case of (N, v) being a unanimity game, i.e., v(N) = 1 and v(S) = 0 for all S ⊂ N,

MV indicates the power distribution (1/n, . . . , 1/n) if the grand coalition is connected by g,

and (0, . . . , 0) otherwise. In case of the full graph, MV(N, v, gN) coincides with SSI(N, v).

10More generally, symmetry of players i and j in a TU game with restricted communication (N, v, g) requires a
permutation π on N which (i) maps i to j and (ii) for which v(S) = v(π(S)) for all S ⊆ N and π(g) = g.
11Requiring only that two players are symmetric in the restricted game (N, v/g) according to section 2.1’s
definition would be a strictly weaker notion of symmetry, which “trades off” asymmetries in weight and
communication: for (N, v) = [2; 1, 0, 1] and g = {{1, 2}, {2, 3}}, player 1 has more weight than 2, but 2 has more
links. They are hence not symmetric in (N, v, g), but happen to be in (N, v/g) (where only N is winning).
12A value f satisfies anonymity if for all (N, v, g), (N, v′, g′) ∈ WG with (N, v) = [q; w] and (N, v′) = [q; w′] for
which there is a permutation π on N such that w′ = π(w) and g′ = π(g) it holds that f (N, v′, g′) = π( f (N, v, g)).
Anonymity implies symmetry.
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Analogously, the restricted Banzhaf index RBI (Owen 1986) maps any given game (N, v, g) to

the Banzhaf index of the corresponding restricted game (N, v/g),13 i.e.,

(7) RBI(N, v, g) ≡ BI(N, v/g).

MV is component efficient, while RBI is not.14 Symmetry of a baseline value implies

symmetry of its restricted version; hence both MV and RBI are symmetric.

3.2. Position Value. Operating on restricted game (N, v/g), rather than on (N, v, g) itself,

can entail a significant loss of information. Consider, for instance, a large unanimity game

and a graph g in which player 1 is the center of a star. Then the restricted game is a

unanimity game, too, and all players are symmetric in (N, v/g). Therefore, MV and RBI

indicate identical power for all players. But all communication which is necessary in order

for the grand coalition to be connected involves player 1. This might plausibly go along

with greater power.

The position value (Borm et al. 1992) follows this line of reasoning. It measures the power of

agents in two steps: first, it considers their links as the “players” in an auxiliary game, the

link game. The importance of links is picked up by computing their SSI in the link game.

Second, the respective two players involved in any of the links share its SSI value equally.

More specifically, let (g, vN) denote the null or simple game played by the links according to

the characteristic function vN given by

(8) vN(h) ≡ v/h(N), h ⊆ g.

So, in (N, v, g)’s link game (g, vN), the worth of a coalition h (of links) is equal to the worth

of the grand coalition N (of agents) in the respective restricted game (N, v/h). A coalition

h of links, therefore, is winning if and only if it connects a winning coalition of (N, v). The

position value PV is then defined by15

(9) PVi(N, v, g) ≡ v({i}) +
1

2

∑

{i, j}∈g

SSI{i, j}(g, vN), i = 1, . . . , n.

The position value can be viewed as arising from a scenario where communication is

established link by link in a random order – until all players cooperate to the highest degree

allowed for by the “communication technology” (formalized by g). Players start with their

13Any other value for standard (simple) games could in this fashion be adapted to games with communication
structure. The list of alternatives includes (N, v/g)’s nucleolus and also equilibrium payoffs in specific Baron-
Ferejohn bargaining games derived from (N, v/g) (see, e.g., Le Breton et al. 2012). We here focus on MV and RBI
since they have been used in the context of communication structures for longest. For results on the non-
monotonicity of the restricted versions of the Deegan-Packel index (Deegan and Packel 1978) and public good
index (Holler 1982), see Napel et al. (2011).
14See section 3.4 for examples of the violation.
15We slightly generalize the definition of Borm et al. (1992) in order to allow for simple games with a dictator.
Slikker (2005a) characterizes PV as the only value satisfying CE and balanced link contributions, while MV satisfies
CE and balanced (agent) contributions. Also see van den Brink (2009) for an instructive comparative axiomatization
of MV, RBI, PV, and the average tree solution, which is introduced below.
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respective stand-alone value v({i}) (which is 0, except if i is a dictator); as communication

possibilities are activated randomly, one after another, the two players that are connected by

any new link share the generated worth vN(h∪{{i, j}})−vN(h) equally. Then PVi is equivalent

to player i’s expected gains or, in simple games without dictator, half of the probability that

one of his links turns a losing coalition into a winning one.16

PV satisfies component efficiency and symmetry, but does not reduce to any standard power

index for the full graph gN: in particular, null players are assigned a positive position value

in (N, v, gN) whenever there is no dictator in (N, v).17 For a unanimity game (N, v) in which

N is connected by a cycle-free graph g, a player’s position value equals half of his share of

links in g.

3.3. Average Tree Solution. While the position value is closely related to the Shapley value

(considering all orderings of links, rather than agents, as equiprobable), the average tree

solution of Herings et al. (2008, 2010)18 takes a different approach. It considers random

hierarchies within the communication network in which cooperation spreads from bottom

to top. Power is then ascribed to the unique player who turns the coalition of previous,

hierarchically lower supporters into a winning one by joining and merging them.

More specifically, for a given graph g on N, a subgraph t ⊆ g is a spanning tree on connected

coalition S if S is connected by t but not by any t′ ⊂ t. A spanning tree thus represents a

minimal set of communication links whose activation allows all members of S to cooperate.

By its minimality, a spanning tree does not contain links to players outside S. And it cannot

contain any cycle, i.e., there do not exist distinct players k1, . . . , kl ∈ S, l ≥ 3, such that

{k1, k2}, . . . , {kl−1, kl} ∈ t and {k1, kl} ∈ t. Therefore, t can be rooted at any j ∈ S, which gives

links an orientation and results in a rooted spanning tree (t, j). A given rooted spanning tree

(t, j) reflects a particular order in which the communication links that suffice to bring all

members of S together might be activated. The set of neighbors of root player j in (t, j) are

naturally called j’s successors. The neighbors of i’s successors, except for i itself, in turn are

their successors. Proceeding in this fashion, one inductively obtains the (possibly empty)

set of successors suci(t, j) ≡ {k | {i, k} ∈ t and i < suck(t, j)} for all players. subi(t, j) denotes the

set which contains player i and his subordinates, i.e., i’s successors, all their successors, and

all subsequent successors. If communication links are activated in a given (t, j) from bottom

to top, i.e., from terminal players towards the root player j level-by-level, then the marginal

16Analogously, MV captures expected gains when communication spreads in a lumpy way, i.e., if one random
player after another brings in all of the communication possibilities which connect him to the players who have
already joined. The close relationships between MV and PV have formally been clarified by Casajus (2007) and
Kongo (2010).
17A star h = {{i, j} | j , i}with null player i at its center connects the grand coalition, and is a winning coalition in
the link game. Some of i’s links therefore have a positive marginal contribution in the link game, which implies
PVi(N, v, g

N) > 0 and a violation of the null player property.
18It was initially defined for cycle-free graphs and then extended to arbitrary communication structures which
connect the grand coalition. While Herings et al. consider one particular class of “admissible” rooted spanning
trees, Baron et al. (2011) axiomatize average tree solutions for any class of rooted spanning trees.
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1 2 3 n-1 n

1 1 1 1 1
q = (n+1)/2

Figure 1. Simple majority voting on a left-right scale

contribution of player i ∈ S in (N, v) with rooted spanning tree (t, j) on S is

mv
i (t, j) ≡ v(subi(t, j)) −

∑

k∈suci(t, j)

v(subk(t, j)).

Thus the marginal contribution is 1 if and only if all coalitions comprising a single successor

of i and all that successor’s subordinates are individually losing but turn winning when they

all become connected by player i joining and merging them.

Given graph g, a rooted spanning tree (t, j) on S is called admissible if it holds for any two

distinct successors k, k′ ∈ suci(t, j) of some player i ∈ N that the coalition comprising them

and their subordinates, subk(t, j) ∪ subk′(t, j), is not connected by g. In other words, any two

players having the same predecessor are neither directly connected by the original graph

g nor indirectly connected via their subordinates.19 The average tree solution ATS then

identifies i’s power in (N, v, g) with the average marginal contribution of player i, computed

over all admissible rooted spanning trees that can be constructed on the component of N

which contains i. Formally, denoting the set of all admissible rooted spanning trees of g on S

by TS,g, the average tree solution is defined by20

(10) ATSi(N, v, g) ≡
1

|TSi,g|

∑

(t, j)∈TSi ,g

mv
i (t, j), i = 1, . . . , n,

where Si ∈ N/g denotes the component containing i. ATS satisfies component efficiency

and symmetry. In case of a unanimity game (N, v) and any graph g which connects the

grand coalition, ATS assigns power proportional to the number of spanning trees that can

admissibly be rooted in a player; thus, if in addition g is cycle-free, each player is ascribed

equal power. In case of the full graph gN, the average tree solution coincides with the

Shapley-Shubik index of (N, v).21

3.4. Illustration. We conclude the section by comparing the power ascriptions of the above

solution concepts in four examples. They involve simple majority voting on a left-right scale

with n = 3, 4, 5, and 6 agents (see figure 1), i.e., (N, v) = [(n + 1)/2; 1, . . . , 1] and g =

19One easily verifies that this definition of an admissible rooted spanning tree is equivalent to the one in
Herings et al. (2010). Only admissible spanning trees (t, j) guarantee that mv

i
(t, j) equals i’s marginal contribution

in v/g when i joins his subordinates, i.e., mv
i
(t, j) = v/g(subi(t, j)) − v/g(subi(t, j)\{i}). Moreover, Herings et al.’s

class of admissible (t, j) is the largest one such that ATS is a Harsanyi solution (see Baron et al. 2011).
20We slightly generalize the definition of Herings et al. (2010): every component is considered separately in
order to allow for graphs that do not connect the grand coalition N. However note that, since we restrict
attention to proper games, at most one component is winning.
21Given the full graph, any player can have at most one successor in an admissible rooted spanning tree, i.e.,
any admissible rooted spanning tree is a linear graph. Then TSi,g represents the set of all orderings on N.
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n = 3: i MVi RBIi PVi ATSi

1, 3 0.17 0.25 0.25 0.00
2 0.67 0.75 0.50 1.00

n = 4: i MVi RBIi PVi ATSi

1, 4 0.08 0.13 0.08 0.00
2, 3 0.42 0.38 0.42 0.50

n = 5: i MVi RBIi PVi ATSi

1, 5 0.08 0.13 0.08 0.00
2, 4 0.17 0.25 0.25 0.00
3 0.50 0.50 0.33 1.00

n = 6: i MVi RBIi PVi ATSi

1, 6 0.05 0.06 0.04 0.00
2, 5 0.10 0.13 0.13 0.00
3, 4 0.35 0.25 0.33 0.50

Table 1. Power for simple majority voting on a left-right scale with n agents

{{1, 2}, {2, 3}, . . . , {n − 1, n}}. Table 1 reports calculations rounded to two decimals. MV and

RBI correspond, respectively, to the Shapley-Shubik and Banzhaf indices of the restricted

game (N, v/g). The MWCs of this game are all coalitions of (n + 1)/2 consecutive players

if n is odd, or of n/2 + 1 consecutive players if n is even. Hence, MV and RBI are positive

but decreasing in distance from the central player(s).22 The MWCs of the link game (g, vN),

which PV considers, are all coalitions of (n − 1)/2 consecutive links if n is odd, or of n/2

consecutive links if n is even. More central links are critical in more coalitions. Since a

link’s criticality is shared equally by the involved agents, PVi is positive but decreases in

i’s distance from the center. Finally, ATS counts the number of rooted spanning trees in

which a given agent is pivotal. For an arbitrary and odd n, the central player is pivotal in

every rooted spanning tree. His ATS value, therefore, equals 1, and that of any other player

amounts to 0. With an arbitrary even number of players, the left (right) central player is

pivotal in all spanning trees rooted in a player on the left (right). This results in an ATS

value of 0.5 for both central players, and 0 for all others. ATS is thus the only of the four

solution concepts that yields an element of (N, v/g)’s core and is in line with the intuition of

the median voter theorem.

4. Monotonicity with Respect toWeights

We now define two notions of monotonicity for power indices f : WG → Rn which concern

the voting weights of players, and then investigate their satisfaction by the considered

indices.

4.1. Definitions. The first kind of weight monotonicity is local in the sense that it concerns

comparisons of distinct players in a single given game (N, v, g). Two players i and j will be

deemed comparable with respect to weights either when they are symmetric or when the

asymmetry between them is only due to different weights – i.e., they would be rendered

symmetric by a replacement of wi and w j with, e.g., w′
i
= w′

j
= 1

2 (wi +w j). Both players must

in such case have essentially equivalent communication possibilities. We formalize this by

22Note that RBI violates component efficiency for n = 3, 5, and 6.
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calling players i and j comparable in weights in game (N, v, g) = [q; w1, . . . ,wn] if they are

symmetric in some game (N, v′, g) = [q; w′
1
, . . . ,w′n] with w′

k
= wk for all k , i, j and w′

i
= w′

j
.

Definition 1. A power index for communication structures f satisfies local monotonicity with re-

spect to weights (LW) or is LW-monotonic if for each (N, v, g) ∈ WG with (N, v) = [q; w1, . . . ,wn]

fi(N, v, g) ≥ f j(N, v, g)

holds for any players i and j that are comparable in weights and for which wi ≥ w j.

An index is thus required to respect a weight advantage for player i over player j, provided

that both enjoy equally good communication possibilities.

The second notion of monotonicity concerns the comparison of a single player’s power

across two different games, and is hence referred to as global monotonicity with respect

to weights. It demands that whenever the underlying weighted voting game changes in

a way that can unambiguously be judged favorable for player i – specifically, i’s voting

weight increases and/or voting weight is shifted from others to i – then this should have a

non-negative effect for player i:

Definition 2. A power index for communication structures f satisfies global monotonicity with

respect to weights (GW) or is GW-monotonic if for each (N, v, g), (N, v′, g) ∈ WG with (N, v) =

[q; w1, . . . ,wn] and (N, v′) = [q; w′
1
, . . . ,w′n]

fi(N, v, g) ≥ fi(N, v
′, g)

holds whenever wi ≥ w′
i
, w j ≤ w′

j
for all j , i, and

∑

j w j ≥
∑

j w′
j
.

As is the case for local and global monotonicity of power indices for games without

communication structure, GW is a stronger requirement than LW in the presence of SYM.

Proposition 1. If a power index for communication structures f is GW-monotonic and symmetric,

then f is also LW-monotonic.

Proof. Let f be a power index satisfying GW and SYM, and consider a game (N, v, g) ∈WG

for which LW would require fi(N, v, g) ≥ f j(N, v, g). Specifically, let (N, v) = [q; w1, . . . ,wn]

be such that players i and j with wi ≥ w j are symmetric in (N, v′, g) ∈ WG with (N, v′) =

[q; w′
1
, . . . ,w′n] where w′

i
= w′

j
= 1

2 (wi + w j) and w′
k
= wk for all k , i, j. Now, noting that

(N, v, g) is more favorable than (N, v′, g) for player i in the sense of GW and that the reverse

is true for player j, GW and SYM imply

fi(N, v, g) ≥ fi(N, v
′, g) = f j(N, v

′, g) ≥ f j(N, v, g).

�
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1 2 3 4 5 6 7 8 9 10 11

1 1 120 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11

1 1 120 0 0 0 0 0 0
q = 3

Figure 2. Position value violates LW (PV2 � PV10)

4.2. Properties of the Considered Indices. That a baseline index for standard simple games

is locally or globally monotonic in weight does not imply LW or GW for its restricted version

for games with communication structure.23 However, we find:

Proposition 2. The restricted versions of all semivalues – so, in particular, the Myerson value MV

and restricted Banzhaf index RBI – are LW-monotonic and GW-monotonic.

Proof. Let f : WG → Rn be the restricted version of a semivalue f̃ , i.e., f (N, v, g) ≡ f̃ (N, v/g).

Now consider two games (N, v, g), (N, v′, g) ∈ WG with (N, v) = [q; w1, . . . ,wn] and (N, v′) =

[q; w′
1
, . . . ,w′n] such that wi ≥ w′

i
, w j ≤ w′

j
for all j , i, and

∑

k wk ≥
∑

k w′
k
. For any S = i,

choose T ∈ (S∪{i})/g with T ∋ i. Then v/g(T) ≥ v′/g(T) and v/g(T\{i}) ≤ v′/g(T\{i}), and thus

v/g(S ∪ {i}) − v/g(S) = v/g(T) − v/g(T\{i}) ≥ v′/g(T) − v′/g(T\{i}) = v′/g(S ∪ {i}) − v′/g(S).

This and (3) imply f̃i(N, v/g) ≥ f̃i(N, v
′/g). Hence fi(N, v, g) ≥ fi(N, v

′, g) and f must be

GW-monotonic. Because f , as the restricted version of a semivalue, is symmetric, it must

also be LW-monotonic (proposition 1). �

In contrast, the position value is not LW-monotonic, and hence – being symmetric – not GW-

monotonic. To see this, consider (N, v, g) ∈ WG with eleven players located on a left-right

scale, i.e., g = {{1, 2}, {2, 3}, . . . , {10, 11}}, and (N, v) = [3; 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1] (see figure 2).

Players 2 and 10 would be symmetric if w2 were lowered to w10 = 0, and hence LW requires

PV2(N, v, g) ≥ PV10(N, v, g). The corresponding link game (g, vN) has two disjoint minimal

winning coalitions: one comprising the four links on the left side of the central player 6,

h1 = {{2, 3}, . . . {5, 6}}, and the five links on 6’s right, h2 = {{6, 7}, . . . {10, 11}}. In particular,

g’s left-most link {1, 2} is never necessary for the establishment of a winning coalition, and

hence it is a null player in (g, vN): player 2’s weight of w2 = 1 makes the inclusion of player 1

redundant. In contrast, w10 = 0 requires activation of link {10, 11} before a losing coalition

on the right can become winning. The SSI in the link game is then 0 for the null link {1, 2},
5

36 for any other link l ∈ h1 on the left side of player 6, and 4
45 for any link l ∈ h2. This results

in position values PV2(N, v, g) = 5
72 <

4
45 = PV10(N, v, g) – a violation of LW.

The average tree solution satisfies both weight monotonicity requirements:24

23To see this, consider f (N, v, g) ≡ f̃ (N, v/g) and the weighted voting game (N, v) = [4; 1, 1, 0, 2, 1, 1, 1] with
g = {{1, 2}, {2, 3}, . . . , {6, 7}}. The corresponding restricted game has {1, 2, 3, 4} and {4, 5, 6} as its MWCs, and hence

no representation [q; w]. Let the baseline index f̃ be the SSI for all simple games apart from this specific (N, v/g),

for which we assume f̃ (N, v/g) = (1/6, 1/6, 1/6, 1/2, 0, 0, 0). Because (N, v/g) is no weighted voting game, f̃ is
locally and globally monotonic. However, f violates LW since it assigns strictly more power to 3 than to 5.
It also violates GW since an increase of weight of 1 for player 3 to (N, v′) = [4; 1, 1, 1, 2, 1, 1, 1] would result in
f (N, v′, g) = (0, 2/15, 2/15, 7/15, 2/15, 2/15, 0).
24 This proposition holds for average tree solutions based on any class of rooted spanning trees.
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Proposition 3. The average tree solution ATS is LW-monotonic and GW-monotonic.

Proof. Consider two games (N, v, g), (N, v′, g) ∈WG with (N, v) = [q; w1, . . . ,wn] and (N, v′) =

[q; w′
1
, . . . ,w′n] such that wi ≥ w′

i
, w j ≤ w′

j
for all j , i, and

∑

k wk ≥
∑

k w′
k
. Let Si ∈ N/g be

the component containing player i. Then, for any arbitrary rooted spanning tree (t, j) on

Si, we have v(subi(t, j)) ≥ v′(subi(t, j)) because i ∈ subi(t, j). Moreover, for all k ∈ suci(t, j),

v(subk(t, j)) ≤ v′(subk(t, j)) since i < subk(t, j). Thus mv
i
(t, j) ≥ mv′

i
(t, j) for any rooted spanning

tree (t, j) on Si, and therefore ATSi(N, v, g) ≥ ATSi(N, v
′, g). So ATS must be GW-monotonic

and – applying proposition 1 – LW-monotonic, too. �

5. Monotonicity with Respect to Communication Possibilities

We now turn to local and global notions of monotonicity which relate the communication

possibilities of players. The latter may be judged as better for player i than for j (or better

for a given player in graph g than in g′) for different reasons. We highlight one particular

local monotonicity requirement and two global ones, and we mention some alternatives.

The following definitions do not involve any explicit voting weights. They can, therefore, be

extended to situations where a value f is applied to general TU games with communication

structure. It is straightforward to check that all monotonicity statements for the mentioned

solution concepts in section 5.2 remain valid if the TU games are superadditive.

5.1. Definitions. We start again by comparing power indications locally, i.e., for different

players in the same game (N, v, g). In analogy to the local monotonicity for weights, we

consider two players comparable either when they are symmetric or when an asymmetry

solely comes from communication possibilities that one player has in advance. We say

that players i and j are comparable in communication possibilities in game (N, v, g) whenever

i and j are symmetric in some game (N, v, g′) where g′ ⊆ g and either g′|N\{i} = g|N\{i} or

g′|N\{ j} = g|N\{ j}. This is a formal way of saying that players i and j would be rendered

symmetric if one player’s communication possibilities were suitably reduced, i.e., if either

some of i’s or some of j’s links were deleted.25

Definition 3. A power index for communication structures f satisfies local monotonicity with

respect to communication possibilities (LC) or is LC-monotonic if for each (N, v, g) ∈ WG

fi(N, v, g) ≥ f j(N, v, g)

holds for any players i and j that are comparable in communication possibilities and for which

|Ni(g)| ≥ |N j(g)|.

A first notion of global monotonicity with respect to communication possibilities pertains

to games (N, v, g) and (N, v, g′) where g ⊇ g′ and all additional links in g involve player i

25It is important to reduce only one player’s communication possibilities in order to ensure comparability.
Otherwise, any i and j with wi = w j would satisfy this weak symmetry condition (simply delete all of i’s and j’s
links) so that, in contrast to the formulation above, g would play no role whatsoever.
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(i.e., g|N\{i} = g′|N\{i}). One might plausibly require that i’s power is weakly greater for com-

munication structure g, since the additional links improve i’s communication possibilities

in absolute terms (but note that i’s new neighbors also have improved possibilities). A

complementary second notion looks at games with graphs g ⊆ g′ in which the links that are

missing in g do not affect the set of connected coalitions involving i, i.e., where Ci(g) = Ci(g′).

Player i’s direct and indirect cooperation possibilities are then identical in both graphs, and

i’s power may be required to be greater for communication structure g than for g′ ⊇ g

because the removed links improve i’s communication possibilities in relative terms: other

players have lost some of their cooperation possibilities, while i has not. These two notions

can be formalized as follows:

Definition 4.

(i) A power index for communication structures f satisfies global monotonicity with respect to

added communication possibilities (GC+) or is GC+-monotonic if for all (N, v, g), (N, v, g′) ∈

WG,

fi(N, v, g) ≥ fi(N, v, g
′)

holds whenever g ⊇ g′ and g|N\{i} = g′|N\{i}.

(ii) The index satisfies global monotonicity with respect to removed communication possibil-

ities (GC−) or is GC−-monotonic if for all (N, v, g), (N, v, g′) ∈WG,

fi(N, v, g) ≥ fi(N, v, g
′)

holds whenever g ⊆ g′ and Ci(g) = Ci(g′).

It is straightforward to check that GC+ is equivalent to the stability condition of Myerson (1977),

which calls for

fi(N, v, g) ≥ fi(N, v, g\{i, j}) and f j(N, v, g) ≥ f j(N, v, g\{i, j})

whenever {i, j} ∈ g. The requirement Ci(g) = Ci(g′) in GC− necessitates Ni(g) = Ni(g′).

The latter is also sufficient for the former if only communication possibilities that connect

neighbors of i are lost, i.e., if { j, k} ∈ g′\g implies j, k ∈ Ni(g).26, 27

An analogue to proposition 1, which related global and local monotonicity with respect

to weights, does not hold for SYM, GC+ and GC−, and LC. That is, a symmetric power

index for communication structures may satisfy both GC+ and GC− but violate LC. To see

this, consider figure 3. It defines an anonymous (and hence symmetric) power index for

(N, v) = [2; 1, 1, 0, 0] and all possible communication structures g by listing the power vectors

26Strengthening GC− to the sole requirement of Ni(g) = Ni(g′) and g ⊆ g′, as a seemingly natural counterpart
to GC+, does not provide a suitable monotonicity concept. It would, for instance, consider the removal of link
{2, 3} in 5-player simple majority voting on a left-right scale (section 3.4) as advantageous for player 1 while, in
fact, it turns 1 into a null player of v/g.
27Hamiache (2011) uses a weakened version of GC−, central player monotonicity, for a characterization of MV. It
concerns link losses of players j , i under the additional premise that i can communicate directly with all other
players. Slikker (2005b) investigates the monotonicity requirement that additional links never lower the power
of any player. This is stronger than GC+, has a character almost opposite to GC−, and is satisfied by none of the
considered indices onWG.
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Figure 3. Definition of a symmetric power index which satisfies GC+ and GC− but
not LC for (N, v) = [2; 1, 1, 0, 0]

for a particular assignment of players 1 and 2 to the bottom and players 3 and 4 to the top

nodes, respectively; those for other communication structures follow by anonymity. Power

of players 3 and 4 is defined to be zero irrespectively of the communication graph. This

violates neither SYM nor GC+ nor GC−. The power assigned to players 1 and 2 varies with

the communication structure (but is independent of whether the dashed link between 3 and 4

is included). The assignment respects symmetry. And, concerning inter-graph comparisons,

it also respects GC+ and GC− for players 1 or 2. However, the fourth graph in the third row

involves a violation of LC: player 1 has less rather than at least as much power as player 2.
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The reason why a clear-cut relationship between local and global monotonicity exists with

respect to weights but not for communication possibilities lies in the different nature of

these two resources. Each unit of voting weight is perfectly divisible and a perfect substitute

for any other one. This implies that two players who are to be compared can be given an

equal weight by shifting some from the stronger to the weaker one. GW predicts that a

transfer of voting weight from one player to another is weakly beneficial for the recipient

and weakly detrimental for the donor. As they become symmetric, and have equal power

by SYM, the desired local monotonicity follows. In contrast, communication structures

are of discrete nature. In a situation where, for instance, two players are identical apart

from one player having a link in advance (players 1 and 2 in the boxed graph of figure 3),

they can only be rendered symmetric by deleting a link of the stronger player, or adding

a link for the weaker one, which does not involve the respective other player. The latter is

necessarily a “third party” in the equalization process. No notion of global monotonicity,

which compares communication structures from the perspective of an individual player, can

exclude or sign externalities on third parties. Such an externality precludes the deduction

of a locally monotonic power ranking for the boxed graph of figure 3: although the defined

power index satisfies GC+ and GC−, player 1 gains more power than 2 when link {2, 3} is

added. Similarly, player 2 loses more than 1 when link {1, 4} is removed. Without a constraint

that involves a comparison of gains from a link addition (or losses from a deletion) across

players that are directly involved and those that are only indirectly involved, there is no way

to deduce that player 1 must have at least as much power as player 2, even though they are

symmetric, and hence have equal power, in the respective neighbors of the boxed graph.28

5.2. Properties of the Considered Indices. The restricted games (N, v/g) and (N, v/g′) which

are induced by two comparable communication structures g and g′ preserve the notion of

g offering better communication possibilities for a given player than g′ which is underlying

GC+ or GC−. Similarly, that some player has better communication possibilities than another

one locally, i.e., in a given graph, translates into a restricted game which is better for one

player than the other. Power indices for communication structures that are defined as a

semivalue of the respective restricted game, therefore, satisfy all of the monotonicity notions

defined above.

Proposition 4. The restricted versions of all semivalues – so, in particular, the Myerson value MV

and restricted Banzhaf index RBI – are LC-monotonic, GC+-monotonic, and GC−-monotonic.

Proof.

(LC) Consider (N, v, g) such that g offers better communication for i than for j in the sense of

LC. Then there is a subgraph g′ ⊆ g with g′|N\{i} = g|N\{i} such that i and j are symmetric in

(N, v, g′) with respect to permutationπwith π(i) = j. For this it holds v/g(S∪{i}) ≥ v/g(π(S)∪

28In a previous version of this paper (Napel et al. 2011), we study the requirement that, when a player gets
additional communication possibilities, his gain must be at least as high as that of any other player. This
property implies GC+ in the presence of CE, and LC in the presence of SYM.
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Figure 4. Position value violates LC, GC+, and GC− (PV1 � PV4 with {1, 2}; player
1 gains and 4 loses when {1, 2} is removed)

{ j}) and v/g(S) ≤ v/g(π(S)) for all S = i. Hence, v/g(S∪{i})−v/g(S) ≥ v/g(π(S)∪{ j})−v/g(π(S))

for all S = i. This yields the desired inequality for the semi-values of i and j.

(GC+) Consider (N, v, g), (N, v, g′) ∈WG such that g offers better communication possibilities

for player i in the sense of GC+. Then for any S = i, it holds v/g(S ∪ {i}) ≥ v/g′(S ∪ {i}) and

v/g(S) = v/g′(S). Therefore, it is v/g(S∪ {i}) − v/g(S) ≥ v/g′(S∪ {i}) − v/g′(S) and the desired

inequality follows directly from the definition of a semivalue (see equation (3)).

(GC−) Consider (N, v, g), (N, v, g′) ∈WG such that g offers better communication possibilities

for player i in the sense of GC−. For any S = i, choose T ∈ (S ∪ {i})/g with T ∋ i. For this we

also have T ∈ (S∪{i})/g′ and thus v/g(T) = v/g′(T). Moreover, v/g(T\{i}) ≤ v/g′(T\{i}). Thus,

v/g(S∪ {i})− v/g(S) = v/g(T)− v/g(T\{i}) ≥ v/g′(T)− v/g′(T\{i}) = v/g′(S∪ {i})− v/g′(S). The

desired conclusion follows. �

The position value does not satisfy any of the communication monotonicities, not even in

perfectly symmetric voting situations. To see this, consider five player unanimity voting

(N, v) = [5; 1, 1, 1, 1, 1] with graphs g = {{1, 2}, {1, 3}, {2, 3}, {3, 4}, {3, 5}} and g′ = g\{{1, 2}}

(see figure 4). With graph g, players 1 and 2 share player 4’s and 5’s sole possibility

to communicate with player 3 and should hence have at least as much power according

to LC. However, 4’s and 5’s single links function as veto players in the link game while

1’s communication possibilities (and 2’s) in some sense “compete” with each other – the

position value amounts to PV(N, v, g) = (0.1, 0.1, 0.45, 0.175, 0.175) and violates LC.29 In the

transition from g to g′, players 1 and 2 lose the communication possibility between them,

which should be detrimental for these players according to GC+. Also, according to GC−,

it should be weakly beneficial for players 4 and 5 since no cooperation possibility is lost for

them. However, the position value evaluates to PV(N, v, g′) = (0.125, 0.125, 0.5, 0.125, 0.125),

in violation of GC+ and GC−.

The average tree solution, as defined by Herings et al. (2010), does not satisfy any of the com-

munication monotonicities either. Consider 4-player unanimity voting (N, v) = [4; 1, 1, 1, 1]

with graphs g = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}} and g′ = g\{{2, 3}} (see figure 5). With

unanimity voting, a player’s power is proportional to the number of admissible spanning

trees rooted in it. For communication structure g, there are four admissible spanning trees

29That violations of monotonicity arise due to “competition” between several links of one agent suggests to
consider some kind of agent-based a priori unions in the link game. This, in fact, leads to MV (see fn. 16).
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Figure 5. Average tree solution violates LC, GC+, and GC− (ATS2 � ATS4 with
{2, 3}; player 2 gains while 4 loses when {2, 3} is removed)
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Figure 6. Admissible spanning trees rooted in players 1 (top) and 2 (bottom) for
the communication structure in figure 5 with {2, 3}

with players 1 or 4 as the root while there are three rooted in players 2 or 3 (see figure 6).

The average tree solution, therefore, amounts to ATS(N, v, g) = ( 4
14 ,

3
14 ,

3
14 ,

4
14 ) – in violation

of LC which requires players 2 and 3 not to be worse off than 1 and 4. Removal of link

{2, 3} makes all players symmetric such that ATS(N, v, g′) = (1
4 ,

1
4 ,

1
4 ,

1
4 ). This violates GC+,

according to which the loss of their communication possibility should not be beneficial for

2’s and 3’s power. It also violates GC−, which requires that 1 and 4 are not harmed by a loss

of communication possibilities between players that they can communicate with directly.

6. Discussion

Power indices for voting games with restricted communication condense two-dimensional

resources – weights and communication possibilities – into single numbers. This is bound

to involve implicit trade-offs across the weight and communication dimensions, which blur

intuitions about how power indications should change with, for instance, the removal of

a link. Well-defined notions of monotonicity can help. They (i) clarify vague intuitions,

(ii) allow to transparently connect distinct requirements for how power indices should

behave ceteris paribus, and (iii) classify indices according to which “better than”-relations

they preserve.

Because power indices for communication structures evaluate both weight and communica-

tion resources, they can, trivially, also be used for the analysis of only weight differences, or of
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Figure 7. Communication structure from Jackson (2008, p. 38) with different
majority rules

q = 4: i MVi RBIi PVi ATSi

1, 2, 6, 7 0.06 0.08 0.08 0.00
3, 5 0.17 0.23 0.22 0.00
4 0.42 0.36 0.27 1.00

q = 5: i MVi RBIi PVi ATSi

1, 2, 6, 7 0.03 0.05 0.02 0.00
3, 5 0.30 0.17 0.24 0.43
4 0.30 0.17 0.43 0.14

q = 6: i MVi RBIi PVi ATSi

1, 2, 6, 7 0.07 0.05 0.04 0.07
3, 5 0.24 0.08 0.21 0.29
4 0.24 0.08 0.35 0.14

q = 7: i MVi RBIi PVi ATSi

1, 2, 6, 7 0.14 0.02 0.07 0.14
3, 5 0.14 0.02 0.18 0.14
4 0.14 0.02 0.29 0.14

Table 2. Power in voting games with communication structures described in figure 7

only communication differences. With respect to weights, restricted versions of standard

power indices, such as the Shapley-Shubik index, simply return a known index when

they are applied to the full graph; others define “new” power indices for unrestricted

voting games. Analogously, following an idea of Owen (1986), one might measure the

advantageousness of particular network locations, often identified with the centrality of

players in a communication graph, by applying a power index for communication structures

to a symmetric voting situation, i.e., a voting rule such as simple majority or unanimity

voting.

Table 6 reports the Myerson value, restricted Banzhaf index, position value and the average

tree solution for the communication structure shown in figure 7 (adapted from Jackson 2008,

p. 38) and, respectively, simple majority voting (q = 4), different supermajority rules (q = 5

and q = 6), and unanimity rule (q = 7). It can be seen that the ranking of players depends

on which symmetric voting rule is considered: ties are created or broken in case of MV and

RBI; a strict ordering is reversed for ATS. This should not be too surprising because the

strategic environment of the agents changes significantly with the majority threshold.30 But

it is worthwhile to keep this observation in mind.

30This can, e.g., be seen by considering the core of the corresponding restricted game. For simple majority
(q = 4), the core of (N, v/g) equals {(0, 0, 0, 1, 0, 0, 0)}. For q = 5 or 6, it contains all imputations which assign zero
to players 1,2, 6, and 7. And for unanimity (q = 7), every imputation is in the core.
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MV RBI PV ATS
SYM + + + +

CE + − + +

LW + + − +

GW + + − +

LC + + − −

GC+ + + − −

GC− + + − −

Table 3. Properties of the considered indices

The most prominent amongst the many measures of centrality in social networks – degree

centrality, Katz prestige, and Bonacich or eigenvector centrality – rank players 3 and 5 as the

most central in figure 7, followed by player 4, and finally players 1, 2, 6, and 7 (Jackson 2008,

p. 43). The only power indications which support this ranking are provided by ATS for

q = 5 and q = 6.31 This indicates one reason why we did not follow a tempting route to

the possible formalization of monotonicity with respect to communication possibilities:

namely, to require a player’s power to be weakly increasing ceteris paribus in a given

measure of centrality. None of the established indices would satisfy this, at least for

the most straightforward centrality measures. What speaks more generally against the

development of monotonicity notions based on some measure of centrality is that these

measures themselves involve a considerable dimensionality reduction and need to be

checked against various intuitive notions of when one player should be regarded more

central than another. Still, future research might make useful attempts in this direction –

and perhaps comes up with new interesting values by investigating extensions of centrality

indicators.

The properties of the considered indices are summarized in table 3. We find that the

Myerson value and the restricted Banzhaf index are most in line with the proposed notions

of monotonicity. They satisfy all requirements that we have defined here; and when they

violate yet more demanding ones, so do their peers. That the position value violates all

of the monotonicities considered in this paper should call for some caution – especially

because any violation of communication monotonicities a fortiori pertains to the entire

class of superadditive TU games with restricted communication. By always dividing

the power of a link half-half and, more importantly, by allowing for a detrimental kind

of competition between the links of a single agent, PV can produce puzzling rankings.

Herings et al.’s average tree solution satisfies both weight monotonicities but none of the

three considered communication monotonicities. Identification of ATS’s non-monotonicity

and of the underlying reasons (primarily, the restriction to admissible rooted spanning

trees) helps to motivate alternative average tree solutions. We show in the appendix that

31The coincidence has to do with the graph’s linear middle part. For linear communication (sub)structures, ATS
favors players that are pivotal from either end of the graph. This benefits the median, player 4, under simple
majority, and more peripheral ones for q = 5 or 6.
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a variation of Herings et al.’s definition, which is based on all possible rooted spanning

trees, satisfies two of the suggested requirements at least in situations in which no cycles are

directly involved in player or game comparisons.

Appendix. The UnrestrictedAverage Tree Solution

In the main text, we examined the average tree solution proposed by Herings et al. (2010),

which restricts the averaging to a particular class of admissible rooted spanning trees.

Baron et al. (2011), however, have introduced and axiomatized average tree solutions for all

possible classes of rooted spanning trees. In this appendix, we consider the monotonicity

properties of the “canonical” unrestricted variant which is based on the class of all possible

rooted spanning trees.

Define the unrestricted average tree solution ATS∗ by

(11) ATS∗i (N, v, g) ≡
1

|T∗
Si,g
|

∑

(t, j)∈T∗
Si ,g

mv
i (t, j), i = 1, . . . , n,

where Si ∈ N/g is the component containing i and T∗
Si,g

is the set of all rooted spanning

trees on Si for g. ATS∗ satisfies component efficiency and symmetry. It is also LW and GW-

monotonic (see fn. 24). In case of a unanimity game (N, v) with any graph g that connects the

grand coalition, ATS∗ assigns equal power to each player (in contrast to ATS, which does not

do so and even violates the examined communication monotonicities for unanimity games).

It indicates positive power for null players if (N, v) has no dictator.

The unrestricted average tree solution satisfies LC at least when the communication

possibilities that a player i has in advance of j connect him only to players which would

without the links that i has in advance belong to a different component. Similarly, it satisfies

GC+ at least when the additional neighbors of a player i in game g are not a member of his

component in g′. Before we formalize this, note that the average tree solution of Herings et

al. does not satisfy LC or GC+ in these situations: consider (N, v) = [2; 1, 1, 1, 0], i.e., simple

majority voting amongst players 1, 2 and 3, with player 4 added as a null player. With a

full graph g = g{1,2,3} on the first three players, one obtains ATS(N, v, g) = (1
3 ,

1
3 ,

1
3 , 0). Then,

with link {1, 4} added, i.e., considering g′ = g ∪ {{1, 4}}, GC+ calls for player 1’s power to be

weakly greater with g′ than with g. Moreover, LC requires 1’s power to be no less than 2’s

or 3’s with communication structure g′. But ATS(N, v, g′) = (2
8 ,

3
8 ,

3
8 , 0) in violation of GC+,

and LC. In contrast, ATS∗ does not violate LC or GC+ here: independent of link {1, 4}, it is

ATS∗(N, v, g) = ATS∗(N, v, g′) = (1
3 ,

1
3 ,

1
3 , 0).

Proposition 5. Denote the component of N containing i in graphs g and g′ by Si and S′
i
, respectively.

(i) For each (N, v, g) ∈WG,

ATS∗i (N, v, g) ≥ ATS∗j(N, v, g)
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holds for all players i and j for which there is a graph g′ verifying the qualifying condition in LC, i.e.,

(a) g′ ⊆ g and g′|N\{i} = g|N\{i},

(b) i and j are symmetric in (N, v, g′) ,

and, in addition, satisfies

(c) {k, k′} < g for all k ∈ Si\S
′
i

and k′ ∈ S′
i
\{i}.

(ii) For all (N, v, g), (N, v, g′) ∈WG,

ATS∗i (N, v, g) ≥ ATS∗i (N, v, g
′)

holds whenever the qualifying condition in GC+ is verified, i.e.,

(a) g ⊇ g′ and g|N\{i} = g′|N\{i},

and, in addition,

(b) {k, k′} < g′ for all k ∈ Si\S
′
i

and k′ ∈ S′
i
\{i}.

Proof.

(i) First, if Si = S′
i
, then ATS∗

i
(N, v, g) = ATS∗

j
(N, v, g) by symmetry. So assume Si ⊃ S′

i
. Let π

with π(i) = j be a permutation such that i and j are symmetric in (N, v, g′). Without loss of

generality, let π(k) = k for k < S′
i
. Every spanning tree t on Si can be uniquely partitioned into

disjoint spanning trees t′ on S′
i

and t′′ on Si\S
′
i
∪ {i}. And, conversely, the union of disjoint

spanning trees t′ on S′
i

and t′′ on Si\S
′
i
∪ {i} yields a spanning tree on Si. Due to symmetry on

S′
i
, also π(t′)∪ t′′ is a spanning tree on Si and the transition from (t′∪ t′′, k) to (π(t′)∪ t′′, π(k))

constitutes a 1-to-1 mapping on T∗
Si,g

. Now the inequality

mv
i (t′ ∪ t′′, k) ≥ mv

i (t′, i) = mv
j (π(t′), j) ≥ mv

j (π(t′), i) = mv
j (π(t′) ∪ t′′, k)

holds for any spanning tree (t′ ∪ t′′, k) on Si and k ∈ Si\S
′
i
. And for k ∈ S′

i
,

mv
i (t′ ∪ t′′, k) = mv

j (π(t′) ∪ π(t′′), π(k)) ≥ mv
j (π(t′) ∪ t′′, π(k)).

It follows that ATS∗
i
(N, v, g) ≥ ATS∗

j
(N, v, g).

(ii) First, if Si = S′
i
, then g = g′ and, trivially, ATS∗

i
(N, v, g) = ATS∗

i
(N, v, g′). So assume Si ⊃ S′

i
.

Every spanning tree t on Si can be uniquely partitioned into disjoint spanning trees t′ on S′
i

and t′′ on Si\S
′
i
∪ {i}. And, conversely, the union of any disjoint spanning trees t′ on S′

i
and

t′′ on Si\S
′
i
∪ {i} yields a spanning tree on Si. Consider a given spanning tree t = t′ ∪ t′′ on Si

and note, first, that for any k ∈ S′
i

mv
i (t′ ∪ t′′, k) ≥ mv

i (t′, k).

Second, for k ∈ Si\S
′
i

we have

mv
i (t′ ∪ t′′, k) ≥ mv

i (t′, i) = max
k∈S′

i

mv
i (t′, k).

It thus follows that the average marginal contribution for spanning tree t = t′ ∪ t′′, taken

over all roots k ∈ Si, is weakly greater than the average marginal contribution for spanning

tree t′, taken over all roots k ∈ S′
i
. Since every spanning tree t′ on S′

i
corresponds with a
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constant number |T∗
Si\S

′
i
∪{i},g
| of spanning trees t = t′ ∪ t′′ on Si, it follows that ATS∗

i
(N, v, g) ≥

ATS∗
i
(N, v, g). �

In view of the combinatorial difficulties involved with spanning trees in the presence of

cycles, we do not have a conjecture regarding the satisfaction of LC or GC+ by ATS∗ for

arbitrary communication situations or arbitrary changes in communication possibilities.

References

Allingham, M. G. (1975). Economic power and values of games. Journal of Economics 35(3–4),

293–299.

Alonso-Meijide, J.-M., C. Bowles, M. J. Holler, and S. Napel (2009). Monotonicity of power

in games with a priori unions. Theory and Decision 66(1), 17–37.

Ambec, S. and Y. Sprumont (2002). Sharing a river. Journal of Economic Theory 107(2), 453–462.
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