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1 Introduction

Suppose that three decision makers respectively command 48%, 37% and 15% of votes

in a council. They might be delegates from three differently sized constituencies,

represent three perfectly disciplined parties in a parliament, or they could be

stockowners with respective shareholdings in a private company. Proposals need

to be supported by a simple majority of votes in order to be passed.

What advantage does commanding the large voting share of 48% give to the first

decision maker, compared to his peer with only 15% of total votes? More generally,

how do asymmetric roles of voters under a given decision rule allocate the ability

to influence the collective decision? This ability is commonly referred to as the

voting power of members of a collective decision making body. Prominent targets of

corresponding power investigations have been the US Electoral College, the Council

of the EU, the UN Security Council, or the Board of Governors of the IMF.

The analysis usually adopts an a priori perspective. This means that investigations

of voting power are not concerned with a specific issue, with a corresponding

realization of preferences, alliances, and factual arguments. They rather try to

assess average or expected asymmetries in influence on outcomes in general. These

asymmetries may be caused by non-uniform voting weights but also other institutional

arrangements like agenda rights, veto powers, etc.

When an actual decision is taken, effects of the voting rule interact with – and

may a posteriori be dominated by – the circumstantial alignment of interests among

the decision makers, their strategic and rhetorical skills, personal friendships, and so

forth. Hence, knowing the distribution of (a priori) voting power may help little for

predicting a specific voting outcome. It is instructive nonetheless to assess voting

power for institutional reasons: in order to compare the roles assigned to different

agents, to identify winners and losers from a rule change, or in order to design voting

rules so that they generate – at least from behind a constitutional ‘veil of ignorance’ –

a level playing field for the interests involved.

Assessing voting power may look trivial at first sight. But, on closer inspection, it

turns out to be misleading that the first player’s weight in our example (48%) is more

than triple that of the third decision maker (15%): given that only a simple majority
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of votes is needed in order to pass proposals, any coalition of two of the voters is

sufficient. So any of the three council members needs just one ally, no matter if its vote

share or voting weight is 48%, 37% or 15%. Therefore, all three can be expected to

wield identical voting power under the decision rule at hand.

As in the example, voting power is typically not proportional to voting weight.

Moreover, many voting rules cannot even be expressed by a simple list of voting

weights – for instance, when legislation requires approval by two parliamentary

chambers with a veto option for the president. One may want to evaluate who is

given how much leverage over outcomes also for such decision arrangements.

An index of voting power is an analytical tool that is designed for the purpose of

such evaluation. A great multitude of distinct indices have been proposed, all trying

to quantify a decision maker’s influence on outcomes in a given environment. The

multiplicity of indices attests to the fact that ‘power’ or ‘influence’ – often used as

synonyms in the literature – have many facets and several meanings. We will mostly

let the formal definitions of prominent indices, their probabilistic interpretations and

some of their properties speak for themselves here. To readers who are curious about

more philosophical discussions of power, the non-trivial distinction between ‘power

over’ and ‘power to’, or links between influence and causation we recommend to

look at Riker (1964) and, most comprehensively, Morriss (2002). Riker (1986) and

Felsenthal and Machover (2005) provide illuminating accounts of the history of voting

power analysis, and how essentially the same mathematical indicators have been

re-invented several times from different backgrounds. Comprehensive introductions

to power indices are given by Felsenthal and Machover (1998) and Laruelle and

Valenciano (2008).

2 Basic Framework for Binary Voting

Many decisions that are taken by councils, committees, parliaments, etc. involve more

than two alternatives, often very many. Most of the analysis of voting power has

nonetheless focused on the binary case, and so will we. We assume that two actions are

available to each voter; the voting rule links them to two distinct collective outcomes –

for instance, a “yes” or “no” decision on some proposal, selection of candidate A or

candidate B, etc. We will review possibilities for formalizing different voting rules
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in such a binary context before discussing indices of voting power in Section 3. An

elaborate account of the binary voting framework is given by Taylor and Zwicker

(1999). We point to analysis of richer settings in Section 5.

2.1 Simple voting games

The first ingredient to formalizing any given institutional arrangement is a compre-

hensive list of the relevant decision makers, interchangeably called voters, agents or

players. This is typically done by collecting them in a finite set N. The set might

contain the names of individuals, acronyms of parties, etc. but it is often convenient

to simply use letters A,B,C, . . . or to work with numbers and the set N = {1, 2, . . . ,n}.

A binary voting rule can then be described by indicating for every subset S of N –

reflecting different divisions of the voters between “yes” and “no”, A and B, etc. –

whether the members of S can jointly bring about their shared goal or not. This can

be done by specifying a mapping v : S 7→ {0, 1}, also called characteristic function. The

statement v(S) = 1 indicates that the members of S can jointly succeed to impose their

will. Analogously v(S) = 0 means that they cannot. Collections S ⊆ N of voters are

also called coalitions. Those with v(S) = 1 are referred to as winning coalitions, the

others as losing coalitions.

An alternative to defining the function v is to simply list all coalitions of decision

makers who are sufficient to pass the bill, elect the preferred candidate, etc. This

amounts to specifying a setW of subsets of N which comprises all winning coalitions.

For instance, the example in Section 1 could be formalized by letting N = {A,B,C}

denote the set of players andW = {AB,BC,AC,ABC} the corresponding set of winning

coalitions (where AB is short-hand notation for N’s subset {A,B}).

It is generally assumed that the empty set ∅ is a losing coalition (v(∅) = 0), while

the ‘grand coalition’ of all players is winning (v(N) = 1). Moreover, if a coalition S

is already winning, it is usually required that any bigger coalition T which contains

it is winning, too. Formally, this requires v to be monotonic: S ⊆ T ⇒ v(S) ≤ v(T). A

combination (N, v) or (N,W) which satisfies these assumptions is also called a simple

(voting) game.

Monotonicity allows us to describe a simple voting game more efficiently by listing

only the so-called minimal winning coalitions, i.e., by indicating the set Wm
⊆ W of
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those winning coalitions S such that exit of any member i ∈ S turns the remainder

S r {i} into a losing coalition. In the example above,Wm = {AB,BC,AC}. Of course,

it is equivalent to define a simple game by providing a complete list L of its losing

coalitions or, more concisely, the set LM of maximal losing coalitions, i.e., those losing

coalitions that would become winning if anyone joined. Here LM = {A,B,C}.

Real voting systems frequently have the property that if the members of a coalition S

are winning, e.g., have the required majority for passing a bill, then the non-members

are losing. The corresponding simple game is then called superadditive or proper:

S ∈ W ⇒ NrS ∈ L. However, some types of proposals – to establish a parliamentary

inquiry commission, for instance – require less than a majority of votes. Then both S

and its complement N r S can be winning, and the corresponding game is not proper.

The opposite case in which both S and its complement N r S are losing often arises

because of supermajority requirements (e.g., a two-thirds majority held neither by the

government nor the opposition). When, in contrast, the complement of every losing

coalition is winning, the game is called strong: S ∈ L ⇒ N r S ∈ W. Simple games

that are proper and strong are known as constant sum or decisive: S ∈ W ⇔ N r S ∈ L.

2.2 Weighted voting games

Many binary voting rules have a convenient representation by means of voting weights.

Specifically, a simple game is called a weighted (voting) game if one can find a non-

negative number wi for each voter i ∈ N together with a positive quota q such that

coalition S is winning if and only if the total weight w(S) =
∑

j∈S w j of its members

meets or exceeds the quota. In this case, we write [q; w1, . . . ,wn] interchangeably with

(N, v) or (N,W).

A given voting rule may not involve weights explicitly but can still correspond to a

weighted voting game. For instance, decisions by the 15 members of the UN Security

Council require nine “yes” votes in total and, moreover, none of the five permanent

members must have cast a veto by voting “no”. If we disregard – despite its importance

in practice – the possibility of abstentions, this rule may be represented using the

quota-and-weights combination [39; 7, 7, 7, 7, 7, 1, . . . , 1].

But not every simple voting game is weighted. To see this, consider the 6-player

game defined by N = {A,B,C,D,E,F} and the set of maximal losing coalitions LM =
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{ACE,ACF,ADE,ADF,BCE,BCF,BDE,BDF}. Note first that coalitions T1 = ACE and

T2 = BDF – being elements ofLM – are both losing. By contrast, S1 = AB and S2 = CDEF

are both winning: neither is a subset of any element ofLM. The former two coalitions

involve the same players equally often as the latter, just in a different arrangement.

Hence, w(S1) + w(S2) = w(T1) + w(T2) would have to hold if a weighted representation

existed. Such representation would need to involve a quota q so that w(S1) ≥ q and

w(S2) ≥ q, and hence w(S1) + w(S2) ≥ 2q. Moreover, w(T1) < q and w(T2) < q. But this

contradicts w(S1) + w(S2) = w(T1) + w(T2).1 So this game is not weighted. Prominent

practical examples of decision rules that do not correspond to a weighted voting game

include the qualified majority rule of the Council of the EU, the amendment of the

Canadian constitution, and also the US federal legislative system involving House,

Senate, Vice-President, and President. There is no way to recurse to weights in order

to assess voting power for them.

We remark that when one weighted representation of a simple game exists, many

others automatically exist too. For instance, the winning and losing possibilities in our

introductory example are represented equally well, e.g., by [50.1%; 48%, 37%, 15%],

[50; 49, 48, 2] or [2; 1, 1, 1]. The latter is the minimum sum integer representation of

the corresponding simple game (N,W): among all weighted representations of the

game which involve only integer numbers, its weight sum is the smallest possible.

This arguably provides a very transparent way to describe voters’ possibilities to

form winning coalitions. It seems tempting to employ rescalings of the respective

minimum integer weights as indicators of power (see Freixas and Kaniovski 2014).

But, as mentioned, many important institutional rules do not allow for a weighted

representation. Moreover, the minimum sum integer representation can fail to be

unique when more than seven voters are involved (e.g., Kurz 2012). It is hence useful

to know the tools discussed in the following section.

1Formally, the combination 〈S1,S2; T1,T2〉 is known as a 2-trade: we “trade” members between two
winning coalitions so that both become losing. Existence of such trades implies non-weightedness.
Conversely, a game must be weighted if no k-trade exists for large enough k (Taylor and Zwicker 1999,
Thm. 2.4.2).
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3 Power Indices for Binary Voting

As pointed out in Section 1, power and influence are multi-faceted. This makes them

hard to quantify in an uncontroversial way, even for the sort of well-defined, quite

restricted decision environments reflected by simple voting games. We refer to Bertini

et al. (2013) for a long but still incomplete list of mappings from the space of n-player

simple voting games to n-dimensional vectors of real numbers which have all been

suggested to capture some aspect of voting power.

The plethora of available indices and mostly futile debates on whether this or that

index is “better” can be intimidating. Some scholars have used it as an excuse to

dismiss the whole approach – especially if they find the binary voting framework of

Section 2 too restrictive anyway. We prefer to regard power indices as useful cousins

to solution concepts in game theory. (Simple voting games may, in fact, be treated as a

special class of cooperative games – those where the image of characteristic function v

is restricted to {0, 1}.) So the following analogy, articulated by Aumann (1987), applies

to them in equal measure:

“Different solution concepts are like different indicators of an economy;

different methods for calculating a price index; different maps (road, topo,

political, geologic etc., not to speak of scale, projection, etc.); . . . They depict

or illuminate the situation from different angles; each one stresses certain

aspects at the expense of others.”

We will first discuss the two best-known indices of voting power, the Penrose-

Banzhaf index (PBI) and the Shapley-Shubik index (SSI). They are particular weighted

averages of the effects or marginal contributions of voters to all conceivable coali-

tions S ⊆ N. One alternative, which leads to the Deegan-Packel index (DPI) and Holler-

Packel index (HPI), is to take only a particular class of coalitions into consideration.

Another, pursued by the nucleolus, is based on a real or virtual surplus which the

institution in question is to divide according to the given majority rule. Computing

the expected surplus shares that are implied by the rule together with a plausible

bargaining protocol constitutes a power evaluation quite distinct from assessments

based on marginal contributions.
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3.1 Penrose-Banzhaf index

The Penrose-Banzhaf index (PBI) of voter i ∈ N in simple game (N, v) is formally defined

by

PBIi(N, v) =
1

2n−1

∑
S⊆Nr{i}

[
v(S ∪ {i}) − v(S)

]
, (1)

where n denotes the total number of voters. The summation considers each coalition S

that does not yet include voter i, and checks if the addition of i to S would make a

difference to outcomes.2 The latter is the case if, under the institutional rules described

by (N, v), proposals can be passed with the joint support of the members of S and of i,

but not the support of S’s members alone.

The bracketed term [v(S ∪ {i}) − v(S)] in equation (1) is known as the marginal

contribution of voter i to coalition S. If it equals 1 in simple game (N, v), we say i’s

decision is pivotal or crucial or critical or decisive for the collective outcome (given the

support of S); we also say that the pair (S,S ∪ {i}) is a swing for i, or that i has a swing.

The summation in equation (1) is thus a simple count of swing positions that may

arise for voter i in the decision making body, and each of them is weighted by the

factor 1/2n−1. This factor is the inverse of the total number 2n−1 of coalitions S which

do not include voter i and so could potentially be swung by i. (It also equals the

number of coalitions S which include i – see fn. 2.) So the PBI of voter i represents the

ratio of i’s actual to i’s potential swing positions. One can also interpret this ratio as

the probability of i being decisive if all coalitions are assumed to be equally likely. This

approach to measuring voting power was first suggested by Lionel S. Penrose (1946,

1952), but forgotten for a while. The index became popular after its independent

reinvention by John F. Banzhaf (1965).3

The PBI has several attractive features. For one, voter i’s PBI is closely related

to the expected success of i under the given voting rule. More specifically, there are

two outcomes of a “yes”-or-“no” vote in which a given player i can be said to be

2Equivalently, one could consider all coalitions S which include i and check if the exit of i would
make a difference, i.e., evaluate

∑
S⊆N,i∈S[v(S) − v(S r {i})]. One may also sum simply over all subsets

S ⊆ N in either case, since S ∪ {i} = S if i ∈ S and S = S r {i} if i < S. The respective totals always equal
the number of winning coalitions in (N, v) that include i minus the number that do not include i.

3See Felsenthal and Machover (2005). The PBI was also independently reinvented by Rae (1969)
and Coleman (1971). Rae ruled out the empty coalition S = ∅, while Coleman conditioned either on
passage or rejection of a proposal. So both considered inessential re-scalings of equation (1).
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successful: either i voted “yes” and the collective decision is “yes” (so some coalition

S with i ∈ S ∈ W formed), or i voted “no” and the collective decision is “no” (S with

i < S ∈ L formed). Under the mentioned probability interpretation of the PBI, i.e.,

considering all 2n different coalitions S ⊆ N to have equal probabilities Pr(S) = 1/2n of

being formed, the likelihoods of these two events combine to

Pr
(
voter i is successful in (N, v)

)
= Pr(i ∈ S ∈ W or i < S ∈ L) =

1
2

+
1
2

PBIi(N, v). (2)

(See, e.g., Felsenthal and Machover 1998, Thm. 3.2.16, for the calculation.) So under

the probabilistic assumptions of the PBI, a voter’s power and his expected success are

almost the same thing – the corresponding quantitative measures are merely an affine

transformation of each other. But this is true only when indeed all coalitions have

equal probability. The latter is equivalent to assuming, first, that every voter is (in

expectation) for or against a proposal equally likely and, second, the realization of each

voter i’s preference is statistically independent of that of any other voter j. This excludes

common biases or partial dependencies among the voters.

Statistical independence and equiprobability define the binomial voting model from

which Lionel S. Penrose concluded a counterintuitive but mathematically sound

benchmark for the fair design of two-tier voting systems. Specifically, suppose that

we are not taking a simple voting game as given but instead trying to find one for

the following situation: m disjoint voter groups N1, . . . ,Nm with n1, . . . ,nm individuals

each decide on the same proposal within their groups by standard majority voting.

Then, a delegate from each group j ∈ {1, . . . ,m} represents the majority decision within

N j in an assembly of delegates, i.e., a game with player set M = {1, . . . ,m}. One may

think of N1,N2, etc. as corresponding to citizens of a US federal state or EU member

country, and the assembly M as the US Electoral College or Council of the EU. From a

democratic fairness perspective, it is then desirable to conduct voting in the assembly

in such a way that the indirect influence of any voter i ∈ N = N1 ∪ . . .∪Nm on collective

decisions is the same, no matter to which constituency j voter i belongs. So we search

for a voting rule v such that (M, v) implements the influence aspect of the one-person-

one-vote principle of democracy.

It is intuitive that the probability of voter i being decisive within his constituency j

falls with the constituency’s size n j. Hence larger constituencies need bigger voting
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power in (M, v) in order to equalize individual voters’ chances to be decisive at large.

But, under the binomial model, it turns out that decisiveness within the constituency is

inversely proportional to the square root of j’s population size n j, not inversely proportional

to n j.4 It follows that the voting rule for the delegates should be selected such that their

implied PBI values are proportional to the square root of the represented population

sizes, not population sizes directly. This is known as Penrose’s square root rule. Having

it as an objective benchmark for the fair design of two-tier voting systems adds to

the attractiveness of the PBI as a power measure. The rule’s normative force for

practical institutional design depends, of course, on the extent to which one believes

(or, perhaps appealing to more basic normative principles, chooses to believe) in the

underlying independence and equiprobability assumptions for voters’ preferences.5

The PBI also satisfies a number of desirable mathematical properties, which the

literature often refers to as axioms. For one, the index is anonymous: it treats players

the same no matter what name or label is assigned to them – only their roles under

the given collective decision rule matter. Namely, if we choose to describe a rule not

by (N, v), but some (N, v′) where the player identifiers are describing the same roles

in a different order (so, formally, v′ results from v by applying a permutation ρ to the

player set N), then the same PBI values as before will be assigned to each role. The

only difference is that a given role will be associated with player i′ = ρ(i) if it was

previously held by i.

Another desirable feature of the PBI, and satisfied also by most other power indices,

is the null player property. A voter i ∈ N is called a null player (also a dummy player) in

(N, v) if i’s presence or absence never has an effect on the outcome, i.e., v(S∪ {i}) = v(S)

for all S ⊆ N. The corresponding axiom is: an index shall assign zero power to every

null player.

A third, somewhat less straightforward requirement is the so-called transfer

4This can be seen relatively easily as follows. Suppose the population size n j = 2k + 1 is odd.
Then decisiveness of voter i in constituency j requires that the 2k other voters in the constituency are
evenly split and so i holds the balance of power. The probability of exactly k “yes”-votes, when “yes”
and “no”-decisions are equally likely and independent, is (2k)!/(k! · k!) · 1/2k

· 1/2k. Applying Stirling’s
formula to the factorials, this approximately equals

√
2/(π · n j) when n j is big, i.e., it is proportional to

1/√n j.
5The dependence structure of voter preferences is the key issue in deriving design benchmarks for

two-tier voting systems under a wide range of objectives. See, e.g., Felsenthal and Machover (1999)
and Kirsch (2013) on avoidance of majoritarian paradoxes, Barberà and Jackson (2006) and Koriyama
et al. (2013) on utilitarian welfare maximization, and Kurz et al. (2017) on equalization of influence.
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property. It relates the power of any player i under four different voting rules for

a fixed set of players: the first two, say, v and ṽ, are arbitrary. The last two are

constructed from the former as follows: a coalition S is winning in v ∧ ṽ – also called

the meet of v and ṽ – if and only if it is winning in v and in ṽ. So v ∧ ṽ’s set of winning

coalitions is the intersectionW∩W̃ of v’s and ṽ’s. Similarly, S is winning in v ∨ ṽ –

also called the join of v and ṽ – if and only if it is winning in v or in ṽ. So v ∨ ṽ’s set of

winning coalitions is the unionW∪W̃. The transfer property requires that the sum

of each player i’s power in v and ṽ be equal to the sum of i’s power in v ∧ ṽ and v ∨ ṽ.

The PBI indeed satisfies PBI(v) + PBI(ṽ) = PBI(v ∧ ṽ) + PBI(v ∨ ṽ).

In fact, the PBI can be shown to be the only power index that satisfies anonymity, null

player property, transfer property and the ‘scaling’ condition that the index values of

all players always add to the total number of swings divided by 2n−1. This was shown

by Dubey and Shapley (1979).6 One can, therefore, read that the PBI is axiomatically

characterized by these properties. Other sets of properties which are satisfied only by

the PBI, and in this sense characterize it uniquely, exist too. See Laruelle and Valenciano

(2001).

The particular scaling of the PBI implies that players’ power values usually do

not add up to 1. For instance, we obtain a PBI vector of
(

11
16 ,

5
16 ,

3
16 ,

3
16 ,

3
16

)
with sum

25
16 for the weighted voting game [51; 35, 20, 15, 15, 15]. Sometimes it is convenient for

comparisons of relative power to normalize the PBI such that it always sums to 1. This

gives the normalized Penrose-Banzhaf index

nPBIi(N, v) =
PBIi(N, v)∑

i∈N PBIi(N, v)
. (3)

To make the distinction clear, the PBI in equation (1) is then also referred to as

the absolute PBI. The normalization in equation (3) not only voids the (admittedly

artificial) original scaling condition and the PBI’s transfer property, but also destroys

6The key idea – also in analogous axiomatizations of other indices – is to initially consider so-called
unanimity games vT in which a fixed subset T of players from N constitutes the only minimal winning
coalition; so vT(S) = 1 ⇔ S ⊇ T. The null player, anonymity and scaling conditions directly fix the
index for such games: it is 0 for the null players i < T. The t others must have the same index value by
anonymity; scaling implies this to be 21−t and hence to coincide with the PBI of (N, vT). The values for all
unanimity games (N, vT) are then extended to arbitrary simple games (N, v) by an induction argument
which uses the transfer property, noting that v = vT1 ∨ . . . ∨ vTm if (N, v)’s minimal winning coalitions
areWm = {T1, . . . ,Tm}.
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any meaningful probabilistic interpretation of a voter’s PBI. It should hence be applied

with care.

3.2 Shapley-Shubik index

If the normalization to having a sum of 1 is imposed as a property – known as efficiency

of an index – right from the start together with anonymity, the null player property

and the transfer property (see Dubey 1975), then we arrive at the Shapley-Shubik index

(SSI):

SSIi(N, v) =
∑
S⊆N

s! · (n − s − 1)!
n!

·

[
v(S ∪ {i}) − v(S)

]
(4)

=
∑
S⊆N

(s − 1)! · (n − s)!
n!

·

[
v(S) − v(S r {i})

]
(5)

where s denotes the cardinality of coalition S and we define 0! to equal 1. Like the

PBI, the SSI averages voters’ marginal contributions. This can equivalently be stated

in terms of joining or leaving any conceivable coalition, i.e., as (4) or (5) (see fn. 2).

In contrast to the PBI, the SSI does not give equal weight to all marginal

contributions of voter i: the factor in front of the brackets is larger if i swings large

or small coalitions than medium-sized ones. For instance, the factor in equation (4)

is 1/5 for S = ∅ and S = N r {i}, but only 1/30 if S includes s = 2 out of n = 5 voters.

Such non-uniform weighting may seem curious at first. It arises in a relatively natural

fashion, however, if we change the perspective from sets S of voters to orderings of

the voters, i.e., distinguish between ABC and ACB, for instance.

An ordering corresponds to a permutation or mapping ρ : N → N where ρ(i)

indicates voter i’s position between 1 and n when N = {1, . . . ,n}. The SSI assigns

an equal weight to all n! = n · (n − 1) · . . . · 1 orderings of the players, i.e., we can also

write

SSIi(N, v) =
1
n!

∑
ρ∈P

[
v(Sρ(i) ∪ {i}) − v(Sρ(i))

]
(6)

where Sρ(i) denotes the subset of voters who have smaller positions than voter i

according to a given ordering ρ, and P is the set of all conceivable orderings of the

voters.
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Motivations of why orderings of players rather than just their division into a

“yes”-camp S and a “no”-camp N r S are of interest tend to leave the tight binary

framework described in Section 2. The first proposals of the SSI, by Shapley (1953) for

more general cooperative games and specifically for voting situations by Shapley and

Shubik (1954), pointed out that coalition formation often takes place in a sequential

fashion. Players reveal support for a new motion one by one, with those who are

most enthusiastic about it presumably going first. The decision maker whose support

first brings about the required majority, settling the issue, is the pivotal voter. His

contribution comes with special influence: he is the least enthusiastic of the members

required for passing, and thus the one who most needs to be won over by concessions

on open details of the proposal. The SSI can thus be associated with an endogenous

perspective on collective decisions, rather than imagining votes on exogenous take-

it-or-leave-it proposals (made by some non-strategic outsider) to which voters would

seem to respond like independent fair coins if we took the PBI’s binomial model

literally. With an endogenous take on decisions, it is plausible to assume that all

orderings – reflecting sequential entry into the coalition by degree of enthusiasm or

for other reasons – are equally likely a priori.

A similar motivation of the SSI involves an explicit account of policies and

preferences over a real interval of alternatives. Suppose all voters have single-peaked

preferences over these alternatives. So each voter i can be characterized by a particular

ideal policy location λi inside the policy interval for whatever issue randomly turns up

for decision. A simple majority of weight requirement, as in Section 1, then makes the

most preferred policy of the (weighted) median voter the only one that cannot be beaten

by any other policy proposal: for any proposal to the left of the median location, the

median voter and the voters to his right command more than 50% of weight and will

rather move right; for any proposal to the right, the median and voters to his left can

block and move left.

The weighted median corresponds exactly to the decisive or pivotal player if we

order voters according to their policy locations. The probability of voter i having

a marginal contribution of 1, which is given by equation (6) for the case that each

ordering is equally likely, is hence the same as that of ending up with the collective

decision x∗ which i likes best: x∗ = λi. We can therefore view the SSI’s assumption
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of each ordering having probability 1/n! as short-hand for the assumption that all

voters pursue an ideal policy that is drawn independently from the same continuous

distribution over an interval of alternatives and voter i’s SSI as capturing his chances

to be the institution’s weighted median or, more generally, pivotal player.7

With this interpretation of the SSI as describing a continuous median voter

environment in reduced form, it is possible to apply it to problems of fair design of

voting systems, similar to the original purpose of the PBI. Namely, consider the two-tier

voting setup introduced in Section 3.1 but let voters have single-peaked preferences

over an interval of alternatives, not just over “yes” and “no”. Let each delegate adopt

the position of the respective constituency’s median voter as in the binary model. Add

the assumption that preferences are positively correlated within each constituency

N j while they remain independent across constituencies. Having some preference

similarity within the constituencies is a plausible reason for why boundaries in a two-

tier system cannot simply be redrawn such that one obtains n1 = . . . = nm. The SSI

of delegate j in voting game (M, v) then approximates the probability that the most-

preferred policy of the median voter in constituency j becomes the collective decision.

Since each voter in a given constituency N j has a probability of 1/n j to be N j’s median,

equal influence for all individuals i ∈ N1 ∪ . . .∪Nm requires SSI values for the delegates

1, . . . ,m which are proportional to their represented population sizes n j, not their square

roots. See Kurz et al. (2017) for details.

The different focuses of PBI and SSI – on equiprobable coalitions of supporters

of an exogenous proposal vs. on equiprobable player orderings related to endoge-

nous specifics of a proposal that is passed – generally result in different power

indications for a given game, even if one invokes the normalized version of the

PBI. For instance, the SSI vector of the weighted voting game [51; 35, 20, 15, 15, 15]

is SSI(N, v) =
(

9
20 ,

1
5 ,

7
60 ,

7
60 ,

7
60

)
, compared to nPBI(N, v) =

(
11
25 ,

1
5 ,

3
25 ,

3
25 ,

3
25

)
. The former

7See Black (1948) on the case of supermajority requirements. We note that other probabilistic ways
to arriving at the coefficients in (4) or (5) exist. One is to directly assume that coalition sizes follow
a particular probability distribution and that all coalitions of a given size have equal conditional
probabilities. See Laruelle and Valenciano (2005). Alternatively, voters 1, . . . ,n can be assumed
to support a random proposal in a conditionally independent fashion with respective probabilities
p1, . . . , pn. If all probabilities pi are equal to the same number p and this number is drawn uniformly
from the unit interval [0, 1], then one arrives at the SSI. This homogeneity assumption for individual
acceptance probabilities is contrasted by Straffin (1988) with the independence assumption of choosing
each pi independently from the uniform distribution on [0, 1], which yields the PBI. Also see Owen
(1995, ch. 12) on this issue and his concept of the multilinear extension of a simple game (N, v).
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ascribes more power to the largest voter and less to the three small voters, compared

to the latter.

It is worthwhile to mention, however, that SSI and PBI usually rank voters in the

same way. More precisely, a player i in a simple game (N, v) can be called (weakly)

more desirable than player j if the replacement of j by i in a coalition S which contains

j but not i never lowers the winning status of S. See Isbell (1956). Formally, we write

i % j if v({i} ∪ S r { j}) ≥ v(S) for each S ⊆ N r {i} with j ∈ S. (Note that i % j and

j % i might hold simultaneously. For instance, this is true for all three voters in the

introductory example, or for voters 3, 4 and 5 in the weighted game above.) Both

PBI and SSI respect this desirability relation among players. Namely, i % j in a given

simple game (N, v) implies both SSIi(N, v) ≥ SSI j(N, v) and PBIi(N, v) ≥ PBI j(N, v). The

only situations where two voters i and j may be ranked differently by PBI and SSI

arise when i and j are not comparable, that is, neither i % j nor j % i holds. This

is not possible for any weighted voting game.8 In particular, both PBI and SSI are

locally monotonic indices: if voter i’s weight and voter j’s weight satisfy wi ≥ w j in any

arbitrary representation of a given weighted voting game, then the indicated power

of i is at least as big as that of j.

3.3 Deegan-Packel index and Holler-Packel index

This monotonicity property is not necessarily satisfied when a power index evaluates

only a subset of coalitions in order to ascribe power to players. Deegan and Packel

(1978) and Holler and Packel (1983), for instance, have proposed to include only the

setWm of minimal winning coalitions (MWC) when assessing power in simple games.

The Deegan-Packel index (DPI) is formally defined as

DPIi(N, v) =
1
|Wm|

∑
S∈Wm, i∈S

1
s

(7)

8The class of simple games in which i % j or j % i holds for every two players i, j ∈ N are known as
complete simple games. PBI and SSI are ordinally equivalent for complete simple games (cf. Freixas 2010),
and since wi ≥ w j implies i % j, so are they for all weighted voting games. One of the rare examples
of small incomplete games in which PBI and SSI ordinally differ is defined by the meet v = v1 ∧ v2 of
v1 = [2; 1, 1, 1, 1, 0, 0, 0, 0] and v2 = [3; 0, 0, 0, 0, 2, 1, 1, 1]. The PBI ranks players 1–4 higher than 6–8 while
the SSI does the opposite. See Straffin (1988).
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where s again denotes the number of elements of the coalition S in question. It can be

viewed as assuming that each MWC S ∈ Wm arises with an equal probability and that

members of S divide spoils related to winning equally among them (or, alternatively,

that each member of S decides for the group with equal probability).

The Holler-Packel index (HPI) of voter i is the normalization

HPIi(N, v) =
hi(N, v)∑

i∈N hi(N, v)
of hi(N, v) =

∑
S∈Wm, i∈S

1. (8)

It equals i’s share of swings in the MWC of (N, v). In contrast to the DPI, the spoils or

power that go with being part of a coalition S ∈ Wm are not divided but treated as

non-rival among its members, i.e., as having features of a public good or a club good

of S. It is therefore also referred to as the public good index.

Membership to MWC need not relate monotonically to voting weight. For

instance, the weighted voting game [51; 35, 20, 15, 15, 15] comes with the set Wm =

{AB,ACD,ACE,ADE,BCDE}. The small voters C, D and E are members to 3 MWC,

which is less than the 4 MWC that include A but more than the 2 MWC of mid-

sized voter B. The corresponding HPI vector is
(

4
15 ,

2
15 ,

3
15 ,

3
15 ,

3
15

)
. As wB > wC but

HPIB(N, v) < HPIC(N, v), this index – like the DPI – fails to be locally monotonic.

A fortiori, it also fails to respect Isbell’s desirability ranking % of voters.

We omit more detailed discussion here of whether such non-monotonicities and

other so-called paradoxes of voting power should be regarded as “a serious pathology”

(Felsenthal and Machover 1998, p. 246), which disqualifies DPI and HPI as plausible

indicators of voting power or not. Some decision environments or measurement

objectives may call for a focus on MWC. See, e.g., the discussion by Brams and

Fishburn (1995) of Riker’s “size principle” or Braham and van Hees (2009) on links

between voting power and causation. Moreover, even if some scholars have serious

qualms about the DPI and HPI, the observation that they yield non-monotonic

power ascriptions only in a few games – such as the one above – may tell us

something interesting about these games, something that would go unnoticed without

considering the indices.
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3.4 Nucleolus

Minimal winning coalitions also turn out to play a special role in non-cooperative

game-theoretic models of bargaining, when committees decide and vote on the

division of a fixed surplus. Following Baron and Ferejohn (1989), Snyder et al.

(2005) and other authors have considered negotiations in which some agent i ∈ N

is randomly ‘recognized’ to propose a surplus division. This proposal is implemented

if a winning coalition S ∈ W defined by the underlying decision rule (N, v) votes for it;

otherwise a new proposer is drawn. The corresponding (stationary subgame-perfect)

equilibrium strategies involve proposals such that the recognized player suggests a

positive surplus share only for members of a MWC and himself. This is the most

economical way to get approval for one’s proposal. A player’s expected equilibrium

payoff generally depends on the assumed probability of being recognized as next

proposer. Montero (2006) has discovered that there are recognition probabilities with

the property that they equal the expected equilibrium surplus shares which arise for

the given voting rule (N, v). They essentially coincide with the nucleolus of (N, v).

The nucleolus is a game-theoretic solution concept that was introduced by

Schmeidler (1969) and first applied to weighted voting games by Peleg (1968). As

Montero (2005) and Le Breton et al. (2012) explain in more detail, the bargaining

foundations of the nucleolus make it a compelling indicator of power when voting

pertains to endogenous surplus divisions.9 Garcı́a-Valiñas et al. (2016) have confirmed

this empirically for the EU.

The nucleolus satisfies anonymity, the null player property and is efficient. (It

follows that it must violate the transfer property; cf. Section 3.2.) In contrast to the

power indices introduced in Sections 3.1–3.3, there is no closed formula by which

the nucleolus can be calculated for arbitrary simple games. The nucleolus instead is

defined as the solution to a minimization problem. Specifically, taking a simple game

(N, v) as given and writing x(S) =
∑

i∈S xi, we call a real vector x = (x1, . . . , xn) with xi ≥ 0

and x(N) = 1 an imputation. For any coalition S ⊆ N and imputation x, the difference

9We note that there also exist links between equilibrium payoffs in non-cooperative models of
bargaining and the SSI. The corresponding bargaining protocols have a less natural feel, however, than
those for the nucleolus. For instance, it is assumed that only the random recognition as next proposer
is linked to voting rule v, while acceptance of a proposal requires unanimity independently of v. See
Laruelle and Valenciano (2008, ch. 4).

17



e(S, x) = v(S)− x(S) is known as the excess of S at x. It can be interpreted as quantifying

the coalition’s dissatisfaction and potential opposition to an agreement on allocation x:

the members of S can create a total surplus of v(S) if they agree on collaborating (1 if S

is winning), but imputation x only gives them x(S). Now, for any fixed x, let S1, . . . ,S2n

be an ordering of all coalitions such that the excesses at x are weakly decreasing, and

denote these ordered excesses by E(x) =
(
e(Sk, x)

)
k=1,...,2n

. Intuitively speaking, E(x) lists

the potential dissatisfaction with a proposed surplus allocation x for all conceivable

coalitions from largest dissatisfaction to smallest. We say that an imputation x is

lexicographically less than an imputation y if Ek(x) < Ek(y) for the smallest component

k with Ek(x) , Ek(y). The nucleolus of (N, v) is then defined as the lexicographically

minimal imputation: among all conceivable divisions of the surplus of 1 that the

grand coalition can generate, it selects the one where the maximal dissatisfaction

across different subsets of N is as small as possible. If several imputations satisfy this

requirement, it selects one of them such that also the second-highest dissatisfaction

is minimal, and so forth. The required minimizations can be achieved by linear

programming. See, e.g., Maschler et al. (2013, ch. 20).10

4 Further Aspects of Voting Power

4.1 Computation of power indices

The most straightforward way of computing pivotality-based indices like the PBI or

SSI is direct enumeration. This means that one goes through one coalition or player

ordering after another, checking each time if any player is decisive and keeping track

of these incidences. Several tools that do this for weighted games with a moderate

number of voters can be accessed online for free (type, e.g., “compute voting power

index online” into a search engine). The tools require the simple voting game (N, v) of

interest to have a representation as the meet of a small number of weighted games.11

Such representation need not be known or may not even exist (cf. Kurz and Napel

2016). In this case, one can easily implement the enumeration method by oneself if one

10A free Mathematica package “TuGames” by Holger Meinhardt allows to calculate the nucleolus –
and much more. See http://library.wolfram.com/infocenter/MathSource/5709.

11The smallest number d such that v1 ∧ . . . ∧ vd = v and v1, . . . , vd are all weighted games with the
same player set N is known as the dimension of simple game (N, v). Online tools usually expect d ≤ 3.
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remembers that each integer number has a unique binary representation, involving

only zeros and ones. It can be obtained by a single conversion command in many

programming languages. Membership of players in a coalition can be expressed with

zeros and ones, too. For instance, the subset S = {1, 3, 5} of N = {1, 2, 3, 4, 5} has the

indicator or characteristic vector x = (1, 0, 1, 0, 1) in which xi = 1 indicates that i ∈ S

and xi = 0 that i < S. This vector – 10101, for short – is the binary equivalent of 21

(= 1+4+16). Enumerating all coalitions∅, {1}, . . . ,N thus amounts to looping through

the binary versions of numbers 0, 1, . . . , 2n
− 1.

Sometimes weighted games involve many symmetric players whose voting

weights give rise to relatively few distinct weight sums. Whenever w(S) assumes

considerably fewer different values than there are coalitions S, it pays to work with

the generating function method instead of enumerating coalitions. The key idea is to

cleverly count the number of all coalitions that come with a particular aggregate

weight ŵ and to evaluate pivotality in all of them in one go. Here it helps greatly that

one can determine the cardinality bŵ = |{S : w(S) = ŵ}| of the set of all coalitions S with∑
i∈S wi = ŵ without constructing this set explicitly. Namely, the numbers bŵ can be

obtained by expanding, i.e., multiplying out, the factors in the generating function

f (x) =

n∏
j=1

(1 + xw j) = (1 + xw1) · (1 + xw2) · . . . · (1 + xwn) (9)

= (1 + xw1 + xw2 + xw1+w2) · . . . · (1 + xwn) = . . . =
w(N)∑
ŵ=0

bŵ · xŵ. (10)

The coefficients bŵ result from collecting all terms which involve the same exponent

of x, which can be done with a single command in many mathematical toolboxes.

Various extensions and algorithmic refinements of the method have been developed

since Mann and Shapley (1962) first applied it to the US Electoral College. See, e.g.,

Lindner (2004, ch. 11) and Alonso-Meijide et al. (2012).

Mann and Shapley had earlier resorted to the Monte Carlo approximation method.

This considers only a randomly drawn sample of coalitions or player orderings,

rather than all. One evaluates players’ pivot frequencies in the sample, and uses

these frequencies as unbiased estimates of the corresponding pivot probabilities of the

players. We refer to Leech (2003) for further approximation methods.
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4.2 Limit results for weighted voting rules

A key raison d’être for power indices is the generally non-linear relationship between

a voter’s weight and power. This non-linearity applies independently of whether one

associates voting power with decisiveness on exogenous take-it-or-leave-it proposals,

with influence on proposals selected from a continuous scale, or with rent shares

linked to budget decisions. The mathematical reason is the discrete and combinatorial

nature of forming coalitions: a voter’s weight is either added to the tally in full, or not

at all.

Intuitively, the lumpiness of voting weights should matter less, the more voters are

involved. Possibly, the stylized examples considered in Sections 1 and 3 just involve

too few players for voting power to be proportional to voting weight? This suspicion is

partially correct. Namely, the ratio of the voting powers of two voters i and j converges

to the ratio wi/w j of their voting weights if one considers ever larger decision making

bodies and certain ‘regularity conditions’ are met. One might interpret this as saying

that there is ever smaller loss in failing to distinguish between voting weight and

power when larger decision making bodies are concerned. This is broadly confirmed

by calculations for the Council of the EU, the US Electoral College, or the IMF’s Board

of Governors.

However, the mentioned regularity requirements are important. For instance, if

we divide 49% of total weight among n− 1 small voters while a single big voter keeps

a weight of 51% regardless of n, then, assuming a simple majority quota, the latter

agent has 100% of voting power. No matter how big an n we consider, there are n − 1

null players and one dictator player, who is characterized by the fact that a coalition

S ⊆ N wins if and only if this player is a member. No convergence of power ratios to

weight ratios takes place.

So a first requirement for expecting proportionality of weight and power in the

limit, i.e., for ever larger voting bodies, is that every individual voter’s weight should

become negligible in relation to the total weight sum.12 Secondly, one needs to rule

12This is not to say that large games are non-interesting if a few major players, say, 1, . . . , k maintain
a non-negligible voting weight, while those of voters k + 1, k + 2, . . . vanish in an ‘ocean’ of small players
who share the remaining weight. The situation at stockholders’ meetings of publicly traded companies
often corresponds to such an oceanic (voting) game. Shapiro and Shapley (1978) and Dubey and Shapley
(1979) have shown how the voting power of the k major players can be determined by analyzing voting
only among them. This is much easier than doing calculations that involve all players. For instance,
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out rare cases where no limit of the ratio of voting powers exists. The latter is, for

instance, the case for the (admittedly contrived) sequence of n-player weighted voting

games where player 1 has weight w1 = 1 while wi = 2 for all i = 2, . . . ,n, with a simple

majority quota of q = (2n − 1)/2. Whenever n is even – for instance, with n = 4 and

hence a total weight of seven – n/2 big players are necessary and sufficient to achieve a

majority. Then 1 is a null player, with zero power for all mentioned indices. However,

when n is odd – moving, say, to n = 5 and a total weight of nine – player 1 has exactly

the same possibilities to bring about a majority as the other players: any coalition of

(n + 1)/2 voters wins. It follows that 1’s relative voting power is 1/n just like that of

voters 2, 3, etc. So the ratio of voter 1’s and 2’s voting power alternates between 0 and

1 forever. In particular, it does not converge to the weight ratio of 1/2.

At a technical level, such problems can be avoided by focusing on voting games that

have a replicative structure as we increase n. This means that all voters are supposed

to come from a finite set of ‘prototypes’. Each of the voter prototypes is characterized

by a particular absolute voting weight. The total relative weight of each prototype

is assumed to be non-vanishing as n → ∞. Under these conditions, limit theorems

establish that voting weight and a particular voting power index indeed become

proportional as n → ∞. Neyman (1982) and Lindner and Machover (2004) have

established this for the SSI and PBI; Kurz et al. (2014) for the nucleolus. Findings for SSI

and nucleolus apply to all decision quotas short of unanimity, while the corresponding

Penrose limit theorem assumes a simple majority threshold. We are unaware if analogous

results exist for the DPI or HPI.

4.3 The inverse problem

The a priori distribution of power in a voting body can, of course, be evaluated not only

for a single rule but many. One may then want to select the rule – say, voting weights

and a quota – which gives rise to an especially desirable power distribution. For

example, PBI values proportional to the square roots of population sizes or SSI values

proportional to population sizes have particular equitability properties in the context

of two-tier voting systems (see Sections 3.1 and 3.2). The challenge is to find a voting

the PBI’s binomial model implies that the ‘ocean’ will essentially be split half-half between “yes” and
“no”. So the PBI for the big players can be computed from a game that only involves players 1, . . . , k,
their weights, and the original quota q reduced by half of the aggregate weight of the oceanic players.
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game (N, v) which induces a power vector, such as normalized PBI values nPBIi(N, v)

for i ∈ {1, . . . ,n}, as close as possible to a particular target vector p∗ = (p∗1, . . . , p
∗

n). This

is known as the inverse (power) problem for the considered index.

Suppose, in accordance with Penrose’s square root rule (Section 3.1), that we choose

the normalized square roots of population sizes in n constituencies as our target p∗.

We would ideally implement a voting rule v such that nPBIi(N, v) = p∗i holds for all

constituencies i ∈ N. Provided that we stick to weighted voting rules, or simple

voting games more generally, this is too much to ask for, however.13 The reason is the

discreteness of voting which we highlighted in Section 4.2. The number of different

simple games, related to the Dedekind numbers in mathematics, grows so fast in a voting

body’s size that it is currently still unknown for n ≥ 9 members. But it is finite, while

there are infinitely many conceivable choices for p∗. It would be pure coincidence if a

game existed that comes with exactly the desired power distribution p∗.

One therefore strives to obtain a solution to the minimization problem

min d(nPBI(N, v); p∗) such that v ∈ G (11)

where G describes the space of permissible games – all simple games, only complete

simple games (see fn. 8), or only weighted games – and d(·) formalizes a particular

notion of distance, i.e., what it means to be ‘close to p∗’. We could, for instance, use

the Euclidean metric d(x, y) =
√∑n

i=1(xi − yi)2 in order to obtain minimal quadratic

deviations from our target.

Solving problem (11) is not easy. Exact solutions can be obtained for up to 9 voters

by enumerating the elements of G if the latter includes only weighted or complete

simple games. For larger player numbers, integer linear programming techniques can be

applied. See Kurz (2012). However, the corresponding algorithms need not terminate

in reasonable time, so that heuristic approaches may actually be preferable for n ≥ 12

(e.g., Kurz and Napel 2014). These can produce an exact hit by chance. And, generally

speaking, the limit theorems discussed in Section 4.2 imply that errors from, first,

13A larger class of voting rules would, for instance, allow the decision quota q to be drawn
randomly before each decision. Then one could implement any normalized target distribution p∗

for the normalized PBI exactly by choosing wi = p∗i for all i ∈ N and drawing the quota q from a uniform
distribution over the interval ( 1

2 , 1]. See Dubey and Shapley (1979, Cor. 3). Such randomized decision
rules, however, do not seem to play any role in practice.
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guessing that weights proportional to the target p∗ are optimal and, second, using

hill-climbing techniques to find local improvements tend to become very small for

‘regular’ problems when n is sufficiently big.

5 Concluding Remarks

It should be clear from the above that assessments of a priori voting power are a non-

trivial exercise already when binary decisions are concerned or represent bargaining

and median voter environments in reduced form. Things get both more realistic

and complicated when richer sets of feasible inputs and outputs of a voting process

are considered explicitly, when additional procedural structure is imposed, or when

one wants to incorporate institutional features which imply non-symmetric relations

between the players.

For instance, several variations of power indices have been proposed for situations

where the decision makers are grouped into disjoint a priori unions, i.e., subsets of

voters who always join or leave a coalition S as a bloc after internal deliberation, or

when their interaction involves restricted communication, so that a coalition S can only

include A and C if also B is present as perhaps their unique connection under a given

communication structure. The best-known indicators of power in voting games with

a priori unions are the Owen index and the Banzhaf-Owen index (Owen 1977, 1982). The

Myerson value, the restricted Banzhaf value and the position value have, among others,

been proposed for voting games with restricted communication. Respectively see

Myerson (1977), Owen (1986) and Borm et al. (1992). Power indices for the case when

coalition formation depends on gradual communication intensities between voters,

which can reflect preferences for coalescing derived from data in a posteriori analysis of

voting power, have been proposed by Aleskerov (2006).

Various authors have also dealt with situations in which voters can choose between

more than two options. For instance, Felsenthal and Machover (1997) and Laruelle and

Valenciano (2012) have investigated ternary and quaternary dichotomous voting rules.

There, collective decisions are still binary but voters have the option to “abstain”

in addition to voting “yes” or “no”, or even to “abstain” and to “not participate”.

The standard notions of decisiveness or pivotality can readily be extended to such

rules. But the particular a priori probability distribution which is underlying an index
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becomes harder to justify. For instance, is it compelling to assume that the marginal

probability for “abstain” is the same as that for, respectively, a “yes” and a “no” vote?

Freixas and Zwicker (2003) have considered ( j, k) simple games. In these, each voter

can choose between j ordered levels of approval of a motion or candidate – e.g.,

different grades on a scale from “A” to “F”. The voting rule then maps each profile

of approval levels which is submitted by the decision makers to one of k ordered

outcomes such as final grades from “pass with distinction” to “fail”; or “make an

attractive offer”, “make an offer”, “don’t make an offer”. Multicandidate voting games,

in which each player votes for exactly one of k unordered candidates and the given

rule selects a single winner, have been analyzed for example by Bolger (1986).

The above-mentioned extensions of the basic binary framework of voting do,

however, not account for well-known problems and the strategic component of voting

whenever there are three alternatives or more. See, e.g., Nurmi (1987, 1999).

Strategic aspects to voting power become particularly important when the decision

making process is structured by a given step-by-step voting procedure. For instance,

the ordinary legislative procedure of the EU involves agenda setting, several amendment

stages, and a bargaining or conciliation stage with well-defined roles for the European

Parliament, the Commission and the Council. It is also called the codecision procedure of

the EU because of the supposedly coequal roles assigned to Parliament and Council.

Do the rules really make them equally influential a priori? Standard indices of

voting power fail to reflect the sequential and strategic nature of legislative processes

into which votes on endogenous proposals are usually embedded. This means the

PBI’s or SSI’s power indications may be quite misleading if procedures and strategic

reasoning matter not only ex post but also from an a priori perspective, i.e., considering

institutional rules while ignoring elusive historical preference data. As the saying goes,

if all you have is a hammer, everything looks like a nail. So it is no surprise that simple

binary power indices have been applied to environments in which they do not make

sense. This has prompted some scholars to call for “a moratorium on the proliferation

of index-based studies” (Garrett and Tsebelis 2001, p. 100).14

Voting power indices like PBI, SSI, DPI, etc. that are based on marginal contri-

butions can – with appropriate scaling – be regarded as measuring the expected

14For a staunch defense of index-based studies see Felsenthal et al. (2003).
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sensitivity of the collective decision to preferences and actions of a given voter. Adopting

this perspective of power measurement as sensitivity analysis, it is possible to extend

analysis of voting power from binary, non-procedural and non-strategic environments

to voting processes with richer inputs and outputs, procedural aspects and strategic

interaction. A more detailed case for this is made by Napel and Widgrén (2004). The

applicable techniques and modeling options are illustrated, for instance, by Maaser

and Mayer (2016) for the EU’s ordinary legislative procedure.

Napel and Widgrén (2011) compare the results from a strategic voting power as-

sessment of decision making by the European Commission, Parliament and members

of the Council with those from standard index-based studies. They find that the latter

can serve as rather good first approximations even if some error cannot be avoided.

Suppose that a sound first approximation is sufficient. The reader may then still be

left with the question: which of the many available indices should I use? All caveats

which are implied by the discussion above notwithstanding, a rough-and-ready

recommendation could be as follows. First, it is both adequate and computationally

most practical to use the PBI for collective decisions on proposals that are binary in

nature and made by an external agent who cannot or will not react to preferences

of the considered voters (i.e., proposals are not selected strategically from a bigger,

non-binary set of options). When votes are instead cast on endogenous proposals,

determined directly by the voting body in question or indirectly by an agenda setter

who reacts to preferences of the decision makers, then the SSI suggests itself for

preferences or enthusiasms for change which vary on some left–right, high–low, etc.

spectrum. For committees that primarily vote on endogenous divisions of rents or

surpluses, the appealing bargaining foundations of the nucleolus make this the most

pertinent tool. If none of these cases applies or one wants to directly obtain more

than a first approximation of how power is distributed in a given decision making

environment, more detailed game-theoretic analysis is recommended. This can, of

course, still be a priori in the sense of extending the uniform probability assumptions

regarding preferences for “yes” or “no”, or preference-induced player orderings, to

the applicable payoff structure on richer domains.
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