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Abstract

Power indices are commonly required to assign at least as much power to a player endowed

with some given voting weight as to any player of the same game with smaller weight. This

local monotonicity and a related global property however are frequently and for good reasons

violated when indices take account of a priori unions amongst subsets of players (reflecting,

e.g., ideological proximity). This paper introduces adaptations of the conventional mono-

tonicity notions that are suitable for voting games with an exogenous coalition structure. A

taxonomy of old and new monotonicity concepts is provided, and different coalitional versions

of the Banzhaf and Shapley-Shubik power indices are compared accordingly.
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1 Introduction

Power indices measure players’ abilities to influence outcomes in voting situations. They are

valuable instruments to study power – arguably the most important concept in political science –

because a player’s voting power is generally not proportional to the voting weight at its source.

On the one hand, this observation is obvious from considering, say, a 50% majority rule applied

to an institution with three players and respective weights of (a) 51, 44, and 5 percent or (b) 49,

44, and 7 percent: Even though players 2 and 3 have a non-negligible share of voting weight in

(a), they are in fact powerless. In contrast, all three players face a perfectly symmetric need (and

opportunity) to find at least one coalition partner in order to pass a proposal in (b), i.e., a priori

they have the same voting power. On the other hand, the actual translation of weights into power

typically is not as straightforward as in (a) or (b), where it seems common sense to describe the

situation by power vectors (1, 0, 0) and ( 1
3 , 1

3 , 1
3 ), respectively – at least if no further information

about players’ inclinations to form coalitions is available.

Several alternative indices have been proposed as suitable mappings from weights and decision

quota to power. The most widely used ones are the Banzhaf and Shapley-Shubik power indices

(Penrose, 1946, Banzhaf, 1965, Coleman, 1971; Shapley and Shubik, 1954), but there are many

others.1 In determining which of all these indices is most suitable in a given context, the respective

axiomatic characterizations and probabilistic foundations play an important role. In addition, the

monotonicity properties of a power index are commonly regarded as a major criterion. Some power

indices will under certain circumstances indicate greater power for a player with a given voting

weight than for another one who has greater weight. Other indices, in contrast, guarantee that any

player endowed with voting weight w is identified as at least as powerful as any player who has a

smaller weight w′ in the given voting game. This property is known as local monotonicity. A related

property which refers to comparisons across games is known as global monotonicity. Though this

may not be obvious at first sight, there are good reasons why some indices are not monotonic in

one, the other, or either sense (see Holler and Napel, 2004a and 2004b). This is true in particular

when there exists information on the relations among players that is relevant for formation of a

winning coalition (defined by jointly meeting the specified quota). Special relations among subsets

of players can derive from their previous interaction, ideological proximity, geographic proximity,

etc.

In this paper, we will specifically consider the case in which players’ inclinations to form

coalitions are captured by a so-called coalition structure: a partition of the set of players into

pairwise disjoint a priori unions. This entails the assumption that either all members of any

a priori union join a coalition, or none of them does. A priori unions can reflect the strict party

1See Felsenthal and Machover (2006) for a historical survey.
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discipline which is prevailing in many national legislatures and electoral bodies such as the German

Bundestag or the US Electoral College. They may also capture the implicit or explicit formation

of blocks within supranational organizations – for instance by the Benelux or eurozone countries

within the European Union (EU), or by EU members within the International Monetary Fund

(IMF) or the World Trade Organization.

Games with coalition structures were first considered by Aumann and Drèze (1974), who

extended the Shapley value to this new framework. A second approach was initiated by Owen

(1977). Its main advantage is to allow for a transparent ‘correction’ of traditional power indices,

while keeping track of their fundamental axiomatic properties with respect to the allocation of

rewards and power both within and between unions. For example, Owen’s (1977) coalitional power

index twice invokes the Shapley value, while Owen (1982) applies the Banzhaf value within and

between unions. In contrast, Alonso-Meijide and Fiestras-Janeiro (2002) use the Banzhaf value in

the game between unions and apply the Shapley value to surplus sharing within unions.2

Coalitional power indices are a useful analytical tool with diverse real-world applications.

Carreras and Owen (1988) explicitly apply the concept of a priori unions in an investigation

of the distribution of power in the Catalonian Parliament (with a recent related study by Alonso-

Meijide et al., 2005). Possible a priori unions formed, for example, by France and Germany, the

Nordic countries, the Benelux countries, or the Mediterranean block play an important role in

Widgrén’s (1994) early evaluation of different EU enlargement scenarios. Vázquez et al. (1997)

apply Owen’s coalitional power index to aircraft landing fees. Alonso-Meijide and Bowles (2005)

and Leech and Leech (2005, 2006) shed light on the distribution of voting power in the IMF

in the context of a political controversy over the tacit a priori union formed by EU members.

Kauppi and Widgrén (2007) have recently shown in voting power-based regression analysis that

the treatment of the historical alliance between France and Germany plays a significant role for

how well EU budget shares can be explained, indicating that a priori unions can have sizeable

financial implications. Turnovec et al. (2007) point out that the European Parliament can be

studied as a game between supranational party groups formed by national party representatives

based on their shared political attitudes, but also as one between informal national a priori unions

formed by the respective delegates from individual member states. There is scope for many more

applied studies.

Since coalitional power indices which take a priori unions into account typically do not obey

the conventional notion of local monotonicity, this property has naturally not played any role

2For related axiomatic characterizations see, e.g., Winter (1992), Vázquez et al. (1997), Amer et al. (2002), or

Hamiache (1999). Procedures to compute coalitional values efficiently can be found in Owen and Winter (1992),

Carreras and Magaña (1994), Alonso-Meijide et al. (2005), and Alonso-Meijide and Bowles (2005); the latter paper

exploits generating functions while all others are based on multilinear extensions.
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in discriminating between different coalitional power indices – let alone in their axiomatization.

This is a main motivation for this paper. Its aim is to meaningfully extend local and global

monotonicity to weighted majority games with a priori unions. It illustrates some distinguishing

features of distinct coalitional power indices and clarifies their relation to traditional indices.

The paper is organized as follows. In Section 2 we introduce our notation, formally state the

conventional notions of local and global monotonicity, and provide definitions of the most common

power indices used for games with and without a given system of a priori unions. Then Sections 3

and 4 introduce two new notions of local monotonicity and two new notions of global monotonicity.

We analyze their relationship and illustrate the new concepts by investigating the properties of

three different coalitional power indices. Section 5 concludes.

2 Preliminaries

A finite (cooperative) game is a pair (N, v) where N = {1, 2, . . . , n} is the set of players and v,

the characteristic function, is a real valued function defined on the subsets of N (referred to as

coalitions) such that v(∅) = 0. A simple game is a game (N, v) in which v only takes the values

0 and 1, is not identically 0, and satisfies the condition v(T ) ≤ v(S) whenever T ⊆ S. A coalition

S is winning if v(S) = 1, and losing if v(S) = 0. For given (N, v), the collection of all winning

coalitions is referred to as W .

A simple game (N, v) is a weighted majority game if there exists a set of weights w1, w2, . . . , wn

for the players, with wi ≥ 0 (i ∈ N) and
∑

i wi = 1, and a quota q ∈ (0, 1] such that S ∈ W

if and only if w(S) ≥ q, where w(S) =
∑

i∈S wi.3 A weighted majority game is represented by

[q;w1, w2, . . . , wn] and we denote the set of all weighted majority games with player set N by

W(N).

A power index for weighted majority games is a function f : W(N) → Rn (or, more precisely,

a family of functions because N and n are not fixed) which assigns to any weighted majority game

(N, v) a vector f(N, v), where the real number fi(N, v) is the power of player i in the game (N, v)

according to f .

The most important power indices are the Banzhaf index and the Shapley-Shubik index (here-

after BZ and SH index). These indices can be written as4

fi(N, v) =
∑

S⊆Nri

pi
S · [v(S ∪ i)− v(S)] , for any i ∈ N, (1)

where
{
pi

S : S ⊆ N r i
}

corresponds to a probability distribution over the collection of coalitions

3See Taylor and Zwicker (1999) for a characterization of the simple games that are weighted majority games.

4In line with the literature, we write S r i instead of S r {i} and S ∪ i instead of S ∪ {i}. Also note that we

consider the non-normalized version of the Banzhaf index.
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not containing i. For the BZ index

pi
S =

1
2n−1

and for the SH index

pi
S =

s! (n− s− 1)!
n!

,

where s refers to the cardinality of S.

The difference v(S ∪ i) − v(S) is called the marginal contribution of player i to coalition S.

Taking into account that for a simple game v(T ) = 1 if T ∈ W and v(T ) = 0 otherwise, it holds

that v(S ∪ i) − v(S) = 1 if and only if S is losing and S ∪ i is winning. In this case, we say that

the pair of coalitions (S, S ∪ i) is a swing for player i.

Given (N, v) ∈ W(N) two players i, j ∈ N are called symmetric if their marginal contribution

to any coalition which contains neither player is the same. A power index f is symmetric if the

power of any two symmetric players is the same; in particular, a symmetric index must ascribe

equal power to players that have equal weight.

An intuitively compelling property in the context of weighted majority games is local mono-

tonicity:

Definition 1 A power index f : W(N) → Rn is locally monotonic if for each weighted majority

game (N, v) = [q; w1, w2, . . . , wn] ∈ W(N)

fi(N, v) ≥ fj(N, v) (2)

holds for every pair of players i, j ∈ N such that wi ≥ wj.

Note that one might impose inequality (2) only for players i, j ∈ N such that wi > wj , i.e., not

directly restricting power when wi = wj . This would result in an equivalent definition because

(2) must hold for each weighted majority representation [q;w1, . . . , wn] of a simple game (N, v).

If one such representation involves wi = wj > 0, there exist ε1 ≥ 0, ε2 > 0 such that [q − ε1; w1 +
ε2

n−1 , . . . , wi + ε2
n−1 , . . . , wj − ε2, . . . , wn + ε2

n−1 ] ∈ W(N) also represents (N, v) (cf. Felsenthal and

Machover, 1998, p. 30); and therefore fi(N, v) ≥ fj(N, v) is required. So it is not essential that

we refer to players’ weights by weak inequalities; it has the advantage, however, that an index’s

violation of monotonicity is exhibited by all weighted voting representations of a given simple

game. Note also that local monotonicity automatically restricts an index to be symmetric.

The marginal contribution of a player i ∈ N weakly increases in weight wi: if player i 6∈ S with

weight wi can turn a losing coalition S into a winning one by joining, then any player j 6∈ S with

weight wj ≥ wi can necessarily do so, too. Moreover, the coefficients pi
S in Eq. (1) only depend

on the cardinality of N for the BZ index and on the cardinality of S and N for the SH index,

i.e., they are constant in i. It follows that for given [q; w1, w2, . . . , wn] with wi ≥ wj , the BZ (SH)
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index of player i is at least as big as the BZ (SH) index of player j, i.e., both indices satisfy local

monotonicity.

While local monotonicity refers to the relation between power of two players in the same game,

another intuitively desirable property looks at power of the same player in two different weighted

majority games:

Definition 2 A power index f : W(N) → Rn is globally monotonic if for every two weighted

majority games (N, v) = [q;w1, w2, . . . , wn] and (N, v′) = [q; w′1, w
′
2, . . . , w

′
n] ∈ W(N)

fi(N, v) ≥ fi(N, v′)

holds for every player i ∈ N such that wi ≥ w′i and wj ≤ w′j for all j 6= i.

Both BZ and SH indices satisfy global monotonicity (see Turnovec, 1998). Turnovec (1998)

proves, too, that any power index f which is globally monotonic and symmetric, is also locally

monotonic.5

We will next formalize an exogenous division of players N = {1, . . . , n} into a priori unions

whose members will either join a coalition together or not at all. Denote by P(N) the set of all

partitions of N . An element P ∈ P(N) is called a coalition structure or a system of unions of the

set N . Whilst the two extreme coalition structures Pn = {{1} , {2} , . . . , {n}} and PN = {{N}}
do not discriminate between the players, all others introduce an asymmetry amongst them which

is generally unrelated to voting weights. A weighted majority game with a coalition structure is a

triplet (N, v, P ), where (N, v) ∈ W(N) and P ∈ P(N). The family of all weighted majority games

with player set N and a coalition structure is denoted by WP(N).

If (N, v, P ) ∈ WP(N), with P = {Pk : k ∈ M, M = {1, . . . ,m}}, the quotient game (M,vP )

induced by (N, v, P ) is the weighted majority game played between the unions, i.e.,

(M,vP ) ∈ W(M) and vP (R) = v(
⋃

k∈R

Pk) for all R ⊆ M.

The game (M, vP ) can be represented by [q;w(P1), w(P2), . . . , w(Pm)] where w(Pk) =
∑

i∈Pk
wi

with k ∈ M, M = {1, . . . , m} .

As in the case without an explicit coalition structure, we call two players i, j ∈ Pk symmetric

in (N, v, P ) ∈ WP(N) if their marginal contribution to every coalition is the same. Analogously,

two a priori unions Pk and Pl are called symmetric if their marginal contribution to any coalition

in the quotient game (M, vP ) is the same.

As a straightforward extension of a power index defined on W(N), a (coalitional) power index

for weighted majority games with a coalition structure is a function g : WP(N) → Rn which

5Global monotonicity is, however, not necessary for local monotonicity: e.g., the normalized BZ index is locally

monotonic (and symmetric) but not globally monotonic.
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assigns to each game (N, v, P ) a vector g(N, v, P ), where the real number gi(N, v, P ) is the power

of player i in the game according to g. Coalitional power indices take a player’s union membership

into account, not only its marginal contributions. They therefore commonly fail to be symmetric in

the conventional sense: players with equal weight may be assigned different power. We introduce

two notions of symmetry which are better suited to games with a coalition structure:

Definition 3 A coalitional power index g : WP(N) → Rn is symmetric within unions if for

each weighted majority game with a coalition structure (N, v, P ) ∈ WP(N), where (N, v) =

[q;w1, w2, . . . , wn] ∈ W(N) and P = {P1, P2, . . . , Pm} ∈ P(N),

gi(N, v, P ) = gj(N, v, P )

whenever the players i, j ∈ Pk ∈ P are symmetric. Moreover, g is symmetric between unions if

∑

i∈Pk

gi(N, v, P ) =
∑

j∈Pl

gj(N, v, P )

whenever the unions Pk, Pl ∈ P are symmetric.

Intuitively speaking, symmetry within unions guarantees that power differences for players in

the same union must be based on differences in their weights (and not, e.g., different relations to

other players inside or outside the union). Analogously, symmetry between unions formalizes that

any difference in the aggregate power values of two a priori unions must be based on a difference

in their respective total weights.

We will focus on three power indices defined on WP(N): the Banzhaf-Owen index (hereafter

BO index), the Symmetric Coalitional Banzhaf index (SCB index) and the Owen index (OW

index). In analogy to Eq. (1), and letting player i be contained in a priori union Pk, these indices

can be written as

gi(N, v, P ) =
∑

R⊆Mrk

∑

T⊆Pkri

pi
R,T ·

[
v(QR ∪ T ∪ i)− v(QR ∪ T )

]
, for any i ∈ N, (3)

where P = {P1, . . . , Pm} describes the coalition structure, M = {1, . . . ,m} is P ’s index set, and

QR =
⋃

l∈R Pl refers to the subset of players belonging to any union referred to by index subset

R ⊆ M . The key difference to the standard evaluation of i’s average marginal contribution (see

Eq. (1)) is that a priori unions other than the union Pk which contains i are assumed to have

either joined with all their members or not at all.

For the BO index (Owen, 1982) the weighting coefficients pi
R,T , which are usually interpreted

as probabilities,6 are

pi
R,T =

1
2m−1

· 1
2pk−1

,

6Also see Laruelle and Valenciano (2004) and Alonso-Meijide et al. (2007).
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for the SCB index (Alonso-Meijide and Fiestras-Janeiro, 2002)

pi
R,T =

1
2m−1

· t!(pk − t− 1)!
pk!

,

and for the OW index (Owen, 1977)

pi
R,T =

r!(m− r − 1)!
m!

· t!(pk − t− 1)!
pk!

where r, t, and pk refer to the cardinality of sets R, T , and Pk, respectively.

It follows from these weights that one can view all three indices as describing a two-level decision

making process. First, the respective pk members of the unions Pk ∈ P take a decision amongst

themselves – with influence on this decision measured using the probability model of either the

SH or BZ index. Second, (representatives of) the m unions take an overall decision based on the

respective bottom-level choices, where influence on the overall decision is again measured by either

the SH or BZ index. Or one takes the perspective of the allocation of a surplus of transferable

utility, corresponding to the worth of the grand coalition v(N) = 1. Then one may interpret above

coefficients as formalizing that unions or union representatives first split the total amount between

the unions, and thereafter each union internally allocates its share.7 At each stage the respective

opportunities for forming coalitions across and inside unions are taken into account in either the

SH or BZ way. In particular for all games with coalition structures Pn = {{1}, {2}, . . . , {n}}
or PN = {{N}}, which respectively imply interaction only between or only within unions, the

OW index coincides with the SH index of (N, v), and the BO index coincides with the BZ index

of (N, v). The SCB index applies the BZ index to inter-union and the SH index to intra-union

interaction, i.e., it coincides with the BZ index for (N, v, Pn) and the SH index for (N, v, PN ).

For illustration, consider the weighted majority game (N, v) represented by
[

68
135 ; 60

135 , 34
135 , 17

135 , 13
135 , 11

135

]

with coalition structure P = {{1}, {2, 4, 5}, {3}}.8 Ignoring the information about the a priori

union of players 2, 4, and 5, one can compute the SH and BZ power indices as

fSH(N, v) =
(

6
10

,
1
10

,
1
10

,
1
10

,
1
10

)

and

fBZ(N, v) =
(

7
8
,
1
8
,
1
8
,
1
8
,
1
8

)
.

7This interpretation implicitly assumes
∑

i∈N gi(N, v, P ) ≤ v(N), which does not generally hold if the (non-

normalized) BZ index is invoked within or between unions.

8This weighted majority game actually reflects the Catalonian Parliament, a typical Western Europe parliamen-

tary body, during Legislature 1995–1999 (see Alonso-Meijide et al. 2005). From an abstract point of view it is an

instance of the so-called apex game: the apex player 1 can form a minimal winning coalition with any other player

and in addition only the coalition involving all small players is minimal winning (meaning that each member makes

a positive marginal contribution).
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The respective power values are weakly increasing in voting weights, which, of course, must be

the case for locally monotonic indices such as fSH and fBZ . In contrast, the BO, SCB, and OW

coalitional power indices, which take coalition structure P into account, yield

gBO(N, v, P ) =
(

4
8
,
1
8
,
4
8
,
1
8
,
1
8

)
,

gSCB(N, v, P ) =
(

3
6
,
1
6
,
3
6
,
1
6
,
1
6

)
,

and

gOW (N, v, P ) =
(

3
9
,
1
9
,
3
9
,
1
9
,
1
9

)
.

All clearly violate local monotonicity: w2 > w3 but each of the coalitional indices indicates greater

power for player 3 than for player 2.

At an intuitive level, the a priori union between players 2, 4, and 5 means that feasible winning

coalitions (or possible governments, in the political context that generated the example) never

involve player 2 alone. Any spoils and policy influence which derive from a winning coalition

will therefore have to be shared by player 2 with players 4 and 5. In contrast, player 3 (who is

symmetric to player 2 ignoring P ) only negotiates on its own behalf and by definition always is the

unique swing player in its own bottom-level subgame. So player 3 keeps an undivided full share

of spoils from the winning coalition potentially formed at the top level. Knowing the coalition

structure formalized by P , we should thus expect the respective power allocation to violate local

monotonicity: indices gOW , gSCB , and gBO would have a problem if they did not (cf. Holler

and Napel, 2004a and 2004b). Monotonicity concepts which take the behavioral constraints that

are implied by a coalition structure into account therefore provide better benchmarks for the

evaluation and comparison of these indices.

3 Local monotonicity and coalition structures

We will first consider adaptations of local monotonicity to weighted majority games with a system

of a priori unions. The subsequent section will then address global monotonicity, and relate both

notions of monotonicity to each other. In either case it is worthwhile to consider two separate

monotonicity properties, within and between unions.

3.1 Local monotonicity within unions

Even when coalition formation in a given weighted majority game is restricted by a system of

a priori unions, we would expect some kind of monotonicity at the ‘very local’ level, i.e., comparing

players who belong to the same a priori union. This is naturally captured by

8



Definition 4 A coalitional power index g : WP(N) → Rn is locally monotonic within unions if

for each weighted majority game with a coalition structure (N, v, P ) ∈ WP(N), where (N, v) =

[q;w1, w2, . . . , wn] ∈ W(N) and P = {P1, P2, . . . , Pm} ∈ P(N),

gi(N, v, P ) ≥ gj(N, v, P )

holds for every pair of players i, j ∈ Pk such that wi≥wj with k ∈ M = {1, . . . , m}.

This property is weaker than conventional local monotonicity,9 because it restricts power only

for players i and j within the same union – not arbitrary pairs i, j ∈ N . If a coalitional power index

satisfies local monotonicity then it also satisfies local monotonicity within unions. If it satisfies the

latter but not the former, then examples of violations must, of course, involve coalition structures

other than PN = {{N}}.
Again note that the marginal contribution of player i ∈ Pk to a given coalition, corresponding

to the difference v(QR∪T ∪ i)−v(QR∪T ) in Eq. (3), is not smaller than that of any player j ∈ Pk

with wj ≤ wi (i, j 6∈ T ). Moreover, the coefficients pi
R,T in Eq. (3) are identical for all i ∈ N in

case of the three considered coalitional indices, respectively. We thus obtain

Proposition 1 The BO, SCB and OW indices satisfy local monotonicity within unions.

3.2 Local monotonicity between unions

An additional and complementing notion of local monotonicity in games with a coalition structure

refers to cross-union comparisons. It relates the aggregate weights of unions Pk and Pl to their

aggregate power values. It is natural to use simple summation for the aggregation of weights, and

this is arguably the best way for the aggregation of individual power values, too. We then say

that a coalitional power index satisfies local monotonicity between unions if total power of a union

cannot exceed total power of another union with greater total weight. Or, more formally:

Definition 5 A coalitional power index g : WP(N) → Rn is locally monotonic between unions if

for each weighted majority game with a coalition structure (N, v, P ) ∈ WP(N), where (N, v) =

[q;w1, w2, . . . , wn] ∈ W(N) and P = {P1, P2, . . . , Pm} ∈ P(N),

∑

i∈Pk

gi(N, v, P ) ≥
∑

i∈Pl

gi(N, v, P )

holds for every pair of a priori unions Pk, Pl ∈ P such that w(Pk) =
∑

i∈Pk
wi ≥ w(Pl) =

∑
i∈Pl

wi.

9Definition 1 refers to indices with domain W(N) and therefore, technically speaking, the two monotonicity

notions cannot be compared. We here and later implicitly refer to the straightforward extension of local and global

monotonicity to domain WP (N) (simply ignoring the given coalition structure).
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Considering our earlier example (N, v) =
[

68
135 ; 60

135 , 34
135 , 17

135 , 13
135 , 11

135

]
with P = {{1}, {2, 4, 5}, {3}}

again, we can see that the BO index violates local monotonicity between unions:

w(P2) =
58
135

≥ w(P3) =
17
135

but
∑

i∈P2

gBO
i (N, v, P ) =

3
8

<
∑

i∈P3

gBO
i (N, v, P ) =

4
8
.

In contrast, we obtain

∑

i∈P2

gSCB
i (N, v, P ) =

∑

i∈P3

gSCB
i (N, v, P ) =

3
6

and ∑

i∈P2

gOW
i (N, v, P ) =

∑

i∈P3

gOW
i (N, v, P ) =

3
9

for the SCB and OW indices, i.e., these are candidates for coalitional power indices that satisfy

local monotonicity between unions.

Local monotonicity between unions requires that unions’ aggregate power values are weakly

increasing in the respective total weights. This implies that players’ individual power values are

weakly increasing in the respective individual weights if all unions are singletons, i.e., if the game

coincides with its quotient game (M, vP ). Therefore examples of a violation of local monotonicity

by an index which is locally monotonic between unions must involve coalition structures other

than Pn = {{1}, . . . , {n}}. One can relate local monotonicity between unions of a coalitional

power index g to conventional local monotonicity of an underlying standard power index f (if it

exists), provided that g treats the original game and its quotient game in a consistent fashion. In

order to make this precise, we need to introduce two more concepts, namely the quotient game

property (Winter, 1992) and coalitional extensions (Alonso-Meijide and Fiestras-Janeiro, 2002).

Definition 6 A coalitional power index g : WP(N) → Rnsatisfies the quotient game property if

for all (N, v, P ) ∈ WP(N) and all Pk ∈ P

∑

i∈Pk

gi(N, v, P ) = gk(M,vP , Pm),

where (M, vP ) ∈ W(N) is the quotient game induced by (N, v, P ) and Pm = {{1}, . . . , {m}}.

This requires that total power of any a priori union Pk in (N, v, P ) is equivalent to the power of

player k (representative of union Pk) in the quotient game vP assuming the degenerate coalition

structure Pm = {{1}, . . . , {m}}.
The property is satisfied by the OW and SCB indices but not by the BO index (Alonso-

Meijide and Fiestras-Janeiro, 2002). The latter can be seen for the five player unanimity game
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(N, v) represented by
[
1; 1

5 , 1
5 , 1

5 , 1
5 , 1

5

]
with coalition structure P = {{1, 2, 3}, {4, 5}}. The BO

index for this game is

gBO(N, v, P ) =
(

1
8
,
1
8
,
1
8
,
2
8
,
2
8

)
.

However, by applying coalition structure P = {{1}, {2}} in the quotient game (M, vP ), repre-

sented by
[
1; 3

5 , 2
5

]
, one obtains

gBO(M, vP , P ) =
(

1
2
,
1
2

)
.

The notion that a coalitional power index g derives from an underlying conventional power

index can be made precise as follows:

Definition 7 Given a power index f : W(N) → Rn, a coalitional power index g : WP(N) → Rn

is a coalitional extension of f if

g(N, v, Pn) = f(N, v)

holds for every (N, v) ∈ W(N) with Pn = {{1}, . . . , {n}}.

In particular, the OW index is a coalitional extension of the SH index, and the BO and SCB

indices are coalitional extensions of the BZ index. Combining the notion of a coalitional extension

with the quotient game property, we obtain:

Proposition 2 If g : WP(N) → Rn is a coalitional extension of f : W(N) → Rn and satisfies the

quotient game property, then local monotonicity of f implies local monotonicity between unions of

g.

Proof. Let g be a coalitional extension of f that satisfies the quotient game property and consider

an arbitrary game (N, v, P ) ∈ WP(N), where (N, v) = [q; w1, w2, . . . , wn] ∈ W(N) and P =

{Pk : k ∈ M, M = {1, . . . ,m}} ∈ P(N). For each Pk ∈ P we have

∑

i∈Pk

gi(N, v, P ) = gk(M, vP , Pm) = fk(M, vP ),

where the first equality uses the quotient game property and the second that g extends f . So

∑

i∈Pk

gi(N, v, P ) ≥
∑

i∈Pl

gi(N, v, P )

if and only if

fk(M, vP ) ≥ fl(M, vP ).

The latter and hence the former must be true for any pair of a priori unions Pk, Pl ∈ P such that

w(Pk) =
∑

i∈Pk
wi ≥ w(Pl) =

∑
i∈Pl

wi whenever f is locally monotonic. ¤

Corollary 1 The SCB and OW indices are locally monotonic between unions.

11



The corollary demonstrates that local monotonicity between unions does not imply conven-

tional local monotonicity, which is violated by the SCB and OW indices (see p. 8). The reverse is

not true either: the trivial index defined by gi(N, v, P ) = 1 for all i ∈ N is locally monotonic, but

not locally monotonic between unions (consider, e.g., P = {{1}, {2, 3}}). However, if a coalitional

power index g satisfies conventional local monotonicity and the quotient game property, then it is

also locally monotonic between unions: g can be viewed as the coalitional extension of an index

f defined by f(N, v) ≡ g(N, v, Pn). This index is locally monotonic, and Prop. 2 can then be

applied.

4 Global monotonicity and coalition structures

We now turn to global monotonicity, and show how above notions of local monotonicity within

and between unions relate to their global analogues.

4.1 Global monotonicity within unions

Global monotonicity refers to the comparison of different games from a given player’s perspective.

We will require that the considered games are comparable in a sense that accounts for the coalition

structure.

Definition 8 A coalitional power index g : WP(N) → Rn is globally monotonic within unions if

for every two weighted majority games with the same coalition structure and quota, i.e., (N, v, P )

and (N, v′, P ) ∈ WP(N) with (N, v) = [q; w1, w2, . . . , wn] and (N, v′) = [q;w′1, w
′
2, . . . , w

′
n] ∈

W(N) and P = {P1, P2, . . . , Pm} ∈ P(N),

gi(N, v, P ) ≥ gi(N, v′, P )

holds for every player i ∈ Pk such that wi ≥ w′i, wj ≤ w′j for all j ∈ Pk r i, and wj = w′j for all

j ∈ Pl, l 6= k.

This property is weaker than conventional global monotonicity because it restricts player i’s

power in (N, v, P ) and (N, v′, P ) only when the weight of every player outside the a priori union

Pk, which contains i, is the same in both games. If a coalitional power index satisfies global

monotonicity then it also satisfies global monotonicity within unions. We have

Proposition 3 The BO, SCB and OW indices satisfy global monotonicity, and hence global mono-

tonicity within unions.

Proof. Consider two weighted majority games (N, v, P ) and (N, v′, P ) with (N, v) = [q;w1, w2, . . . , wn]

and (N, v′) = [q;w′1, w
′
2, . . . , w

′
n] satisfying wi ≥ w′i for some player i and wj ≤ w′j for all j 6= i.

12



Now consider an arbitrary coalition S ( N which does not contain player i. We immediately have

∑

j∈S

w′j ≥
∑

j∈S

wj . (4)

And from
∑

j wj =
∑

j w′j = 1 we get

wi − w′i =
∑

j 6=i

(w′j − wj) ≥
∑

j∈S

(w′j − wj),

which implies
∑

j∈S

wj + wi ≥
∑

j∈S

w′j + w′i. (5)

Recalling that v(S) = 0 ⇐⇒ ∑
j∈S wj < q and v(S) = 1 ⇐⇒ ∑

j∈S wj ≥ q, Eq. (4) implies

v′(S) = 0 =⇒ v(S) = 0

and Eq. (5) implies

v′(S ∪ i) = 1 =⇒ v(S ∪ i) = 1.

So i’s marginal contribution to any coalition is weakly greater in (N, v) than in (N, v′). This is

true in particular for all coalitions QR ∪ T considered in Eq. (3), and so the claim follows from

observing that the respective coefficients pi
R,T are unaffected by weight changes. ¤

It turns out that the link between global and local monotonicity via symmetry that exists

for standard power indices (Turnovec, 1998) extends to the respective ‘within-unions’ notions of

monotonicity for coalitional power indices:

Proposition 4 If a coalitional power index g : WP(N) → Rn is globally monotonic within unions

and symmetric within unions, then it is also locally monotonic within unions.

Proof. Let g : WP(N) → Rn satisfy global monotonicity within unions and symmetry within

unions. Let game (N, v, P ) ∈ WP(N), where (N, v) = [q;w1, w2, . . . , wn] and P = {P1, P2, . . . , Pm} ,

be such that there exist two players i, j ∈ Pk, k ∈ M = {1, . . . ,m} with wi ≥ wj .

Now consider the game (N, v′, P ) ∈ WP(N) with (N, v′) = [q; w′1, w
′
2, . . . , w

′
n] defined by w′i =

wi− (wi−wj)/2, w′j = wj +(wi−wj)/2, and wh = w′h for all h 6= i, j. Global monotonicity within

unions implies

gi(N, v, P ) ≥ gi(N, v′, P )

gj(N, v′, P ) ≥ gj(N, v, P ).

And, given that w′i = w′j , symmetry within unions implies

gi(N, v′, P ) = gj(N, v′, P ).

So gi(N, v, P ) ≥ gj(N, v, P ). ¤
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A (non-symmetric) index which is globally monotonic within unions but not locally monotonic

within unions is, e.g., given by gi(N, v, P ) ≡ gOW
i (N, v, P ) for players i outside a given union

Pl ∈ P , whilst for every player i ∈ Pl we have gi(N, v, P ) ≡ pi gOW
i (N, v, P ) with pi ≥ 0,

∑
j∈Pl

pj = 1, and pk 6= pj for some k, j ∈ Pl.

4.2 Global monotonicity between unions

It remains to relate the aggregate power of a priori unions to their aggregate voting weights in

different but (in order to be meaningful) closely related games:

Definition 9 A coalitional power index g : WP(N) → Rn is globally monotonic between unions if

for every two weighted majority games with the same coalition structure and quota, i.e., (N, v, P )

and (N, v′, P ) ∈ WP(N) with (N, v) = [q; w1, w2, . . . , wn] and (N, v′) = [q;w′1, w
′
2, . . . , w

′
n] ∈

W(N) and P = {P1, P2, . . . , Pm} ∈ P(N),
∑

i∈Pk

gi(N, v, P ) ≥
∑

i∈Pk

gi(N, v′, P )

holds for every union Pk ∈ P such that w(Pk) =
∑

i∈Pk
wi ≥ w′(Pk) =

∑
i∈Pk

w′i and w(Pl) ≤
w′(Pl) for all l 6= k.

Intuitively, global monotonicity between unions requires that a union’s aggregate power is (weakly)

bigger in a game in which it has more aggregate weight than in one with less, provided that other

unions’ respective total weights have not increased.

The lack of local monotonicity between unions, identified earlier, already suggests that the

BO index also violates global monotonicity between unions. For example, the games (N, v, P ) =

[ 1722 ; 6
22 , 16

22 , 0, 0] and (N, v′, P ) = [ 1722 ; 7
22 , 5

22 , 5
22 , 5

22 ] with P = {{1}, {2, 3, 4}} satisfy

w(P2) =
16
22
≥ w′(P2) =

15
22

and w(P1) =
6
22
≤ w′(P1) =

7
22

but one obtains
∑

i∈P2

gBO
i (N, v, P ) =

1
2

<
∑

i∈P2

gBO
i (N, v′, P ) =

3
4
.

In contrast to the within-unions case, global monotonicity between unions and conventional

global monotonicity are two independent properties of a coalitional index. For example, the index

defined by

gi(N, v, P ) =





wi if i ∈ Pk and i = min Pk,

wi/2 otherwise

is globally monotonic but violates global monotonicity between unions (consider, e.g., a weight

shift from the first player in Pk to the others). Similarly the index given by

gi(N, v, P ) =





1 if i ∈ Pk and i = min(argminj∈Pk
wj),

0 otherwise

14



is globally monotonic between unions but violates conventional global monotonicity (increasing

the weight of a union’s smallest member can reduce its power).

As in the case of monotonicity within unions, the global version of monotonicity between

unions implies the respective local property provided that the index under consideration satisfies

an additional symmetry condition:10

Proposition 5 If a coalitional power index g : WP(N) → Rn is globally monotonic between unions

and symmetric between unions, then it is also locally monotonic between unions.

Proof. Let g satisfy global monotonicity between unions and symmetry between unions. Let

game (N, v, P ) ∈ WP(N), where (N, v) = [q;w1, w2, . . . , wn] and P = {P1, P2, . . . , Pm} , be such

that there exist two a priori unions Pk, Pl ∈ P with w(Pk) ≥ w(Pl). Now consider the game

(N, v′, P ) ∈ WP(N) with (N, v′) = [q; w′1, w
′
2, . . . , w

′
n] defined by

w′j =





(
∑

i∈Pk
wi − 1

2 (
∑

i∈Pk
wi −

∑
i∈Pl

wi))/|Pk| if j ∈ Pk,

(
∑

i∈Pl
wi + 1

2 (
∑

i∈Pk
wi −

∑
i∈Pl

wi))/|Pl| if j ∈ Pl,

wj if j /∈ Pk ∪ Pl.

Global monotonicity between unions implies
∑

i∈Pk

gi(N, v, P ) ≥
∑

i∈Pk

gi(N, v′, P )

∑

i∈Pl

gi(N, v′, P ) ≥
∑

i∈Pl

gi(N, v, P ).

And, given that
∑

i∈Pk
w′i =

∑
i∈Pl

w′i, symmetry between unions implies
∑

i∈Pk

gi(N, v′, P ) =
∑

i∈Pl

gi(N, v′, P ).

So
∑

i∈Pk
gi(N, v, P ) ≥ ∑

i∈Pl
gi(N, v, P ). ¤

As for the local analogue, it is possible to relate global monotonicity between unions of a

coalitional power index to conventional global monotonicity of an underlying standard index:

Proposition 6 If g : WP(N) → Rn is a coalitional extension of f : W(N) → Rn and satisfies the

quotient game property, then global monotonicity of f implies global monotonicity between unions

of g.

Proof. Let g be a coalitional extension of f that satisfies the quotient game property and consider

any arbitrary game (N, v, P ), where (N, v) = [q; w1, w2, . . . , wn] and P = {P1, P2, . . . , Pm} ∈
P(N). The quotient game property and the fact that g extends f imply

∑

i∈Pk

gi(N, v, P ) = gk(M, vP , Pm) = fk(M, vP )

10An index which is globally but not locally monotonic between unions is, e.g., given by gi(N, v, P ) ≡
pk gOW

i (N, v, P ) for i ∈ Pk, where pk ≥ 0,
∑

k pk = 1, and pk 6= pl for some k, l ∈ {1, . . . , m}.
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for each Pk ∈ P . For any game (N, v′, P ) with the same coalition structure and quota, i.e.,

(N, v′) = [q; w′1, w
′
2, . . . , w

′
n] ∈ W(N), one analogously has

∑

i∈Pk

gi(N, v′, P ) = gk(M, (v′)P , Pm) = fk(M, (v′)P ).

So
∑

i∈Pk

gi(N, v, P ) ≥
∑

i∈Pk

gi(N, v′, P )

if and only if

fk(M, vP ) ≥ fk(M, (v′)P ).

The latter and hence the former must be true if w(Pk) ≥ w′(Pk) and w(Pl) ≤ w′(Pl) for all l 6= k

whenever f is globally monotonic. ¤

Corollary 2 The SCB and OW indices are globally monotonic between unions.

The Proposition also implies that even though we have shown conventional global monotonicity

and global monotonicity between unions to be independent properties, they are close cousins: if

a coalitional power index g satisfies conventional global monotonicity and the quotient game

property, then it is also globally monotonic between unions. Namely, g is a coalitional extension

of an (artificial) index f defined by f(N, v) ≡ g(N, v, Pn), which inherits g’s global monotonicity

and to which Prop. 6 can be applied.

5 Concluding Remarks

Coalitional power indices which take a priori unions into account fundamentally differ from stan-

dard power indices as they can introduce an asymmetry among the players on top of the one

created by differences in voting weights. Both types of asymmetry interact in a way that makes

conventional notions of monotonicity – being merely a reflection of weight asymmetry – incomplete

or even meaningless.

This paper adapted the conventional local and global monotonicity concepts to take account

of a priori unions. First, we restricted power comparisons to players that differ in weight but

belong to the same a priori union; only they are comparable in a straightforward sense. Second,

we extended the notion of power monotonicity from individuals to groups of individuals. The

former amounted to a comparison of power among players within a given union, the latter to

comparisons between the a priori unions as actors themselves. The relationships identified in this

paper between new and old concepts are illustrated in Figure 1.11 Other useful monotonicity

11It is straightforward that all considered indices are symmetric within unions. However, only the OW and

SCB indices are also symmetric between unions (see the example after Definition 6). Note also that the index
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coalitional extension of a

locally monotonic index
coalitional extension of a

globally monotonic index

local monotonicity

between unions

local monotonicity

within unions

quotient game property

global monotonicity

between unions

global monotonicity

within unions

symmetry

between unions

symmetry

within unions

Prop. 2 Prop. 6

Prop. 5

Prop. 4

OW, SCB, BO OW, SCB, BO

OW, SCBOW, SCB

OW, SCB, BO

OW, SCB

OW, SCB

OW, SCB, BO OW, SCB, BO

global monotonicitylocal monotonicity

symmetry OW, SCB, BO

–

–

Figure 1: Taxonomy of monotonicity concepts for coalitional indices

notions might be defined (e.g., relating players of distinct but still in some sense ‘comparable’

unions); we believe to have singled out the four most natural ones.

Our respective local monotonicity properties are as in the standard case implied by the related

global monotonicity property in conjunction with a rather compelling symmetry requirement. One

can, therefore, focus on inter-player or inter-union comparisons within the same game, i.e., local

monotonicity. Amongst the two local concepts which we considered, within-union monotonicity

failed to discriminate between the major coalitional indices – the Owen index, the Banzhaf-Owen

index and the Symmetric Coalitional Banzhaf index. On the one hand, it is good news that all

three satisfy the intuitively appealing requirement that if two individual players differ in nothing

but weight, the one with smaller weight cannot have more power than the other. On the other

hand, it could be regarded as dissatisfying: local monotonicity within unions is of limited use

for selecting between the main coalitional indices. The discriminatory power of the popular local

monotonicity requirement for conventional indices, however, has the same limitation: all indices

based on Eq. (1) with pi
S ≡ pS are locally monotonic, including the Banzhaf and Shapley-Shubik

power indices.

The between-union version of local monotonicity does discriminate between the major coali-

tional indices, but it is a less straightforward requirement. It is not obvious why an a priori union

considered in fn. 10 is not symmetric between unions but satisfies the quotient game property, and that gi(N, v, P ) ≡
maxr∈M |Pr|/|Pk| for i ∈ Pk is symmetric between unions but does not satisfy the quotient game property; hence

these two attributes are independent.
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with smaller weight should not wield more power in aggregate than one with greater weight: the

respective numbers of members and internal weight distributions are possibly very different. One

plausible argument is that unions with fewer members or ones with more concentrated weights are

more influential because they suffer from fewer internal divisions.12 In fact, the Banzhaf-Owen in-

dex tends, ceteris paribus, to indicate more power for smaller unions. It fails the ‘between-unions’

local monotonicity test, whilst the Owen and Symmetric Coalitional Banzhaf indices pass it.

So within-union monotonicity can be considered as a general adequacy criterion for coalitional

power indices (assuming that all aspects relevant to players’ interaction are captured by weights

and coalition structure). In contrast, between-union monotonicity is a more divisive property,

which is compelling to some but will seem artificial to others. The same can also be said of the

quotient game property, introduced by Winter (1992). Our analysis has identified it as being

crucial for monotonicity between unions.

The multitude of indices proposed for games without a priori unions allows for an even bigger

number of coalitional power indices. So there is ample scope for application of the monotonicity

concepts proposed in this paper. Assessing whether the basic requirement of monotonicity within

unions is met seems a good first test. Next, it is in our view worthwhile to distinguish indices

that rule out effects of intra-union details (in particular, effects of a union’s cardinality or its

internal weight distribution) and that are hence monotonic between unions – and those that do

not. Together with other adequacy requirements, such as efficiency or zero power for null players

(with zero weight), monotonicity within and between unions can thus help to determine which of

many possible indices is, in a given context, the most suitable one.
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[5] R. Amer, F. Carreras, and J.M. Giménez (2002). “The modified Banzhaf value for games

with a coalition structure: An axiomatic characterization”, Mathematical Social Sciences, 43,

45-54.

[6] R.J. Aumann and J. Drèze (1974). “Cooperative games with coalition strutures”, Interna-

tional Journal of Game Theory, 3, 217-237.

[7] J.F. Banzhaf III (1965). “Weighted voting does not work: A mathematical analysis”, Rutgers

Law Review, 19, 317-343.

[8] F. Carreras and G. Owen (1988). “Evaluation of the Catalonian Parliament, 1980-1984”,

Mathematical Social Sciences, 15, 87-92.

[9] F. Carreras and A. Magaña (1994). “The multilinear extension and the modified Banzhaf–

Coleman index”, Mathematical Social Sciences, 28, 215-222.

[10] J. Coleman (1971). “Control of collectivities and the power of a collectivity to act”, in B.

Lieberman (Ed.), Social Choice, New York: Gordon and Breach, 269-300.

[11] D.S. Felsenthal and M. Machover (1998). The Measurement of Voting Power: Theory and

Practice, Problems and Paradoxes, Cheltenham: Edward Elgar.

[12] D.S. Felsenthal and M. Machover (2006). “Voting power measurement: A story of misrein-

vention”, Social Choice and Welfare, 25, 485-506.

[13] G. Hamiache (1999). “A new axiomatization of the Owen value for games with coalition

structures”, Mathematical Social Sciences 37, 281-305.

[14] M.J. Holler and S. Napel (2004a). “Local monotonicity of power: Axiom or just a property?”,

Quality and Quantity, 38, 637-647.

[15] M.J. Holler and S. Napel (2004b). “Monotonicity of power and power measures”, Theory and

Decision, 56, 93-111.

19



[16] H. Kauppi and M. Widgrén (2007), “Voting rules and budget allocation in an enlarged EU”,

European Journal of Political Economy 23, 693706.

[17] A. Laruelle and F. Valenciano (2004). “On the meaning of the Owen-Banzhaf coalitional value

in voting situations”, Theory and Decision, 56, 113-123.

[18] D. Leech and R. Leech (2005). “Voting Power in the Bretton Woods Institutions”, in G.

Gambarelli and M.J. Holler (Eds.), Power Measures III (Homo Oeconomicus, 22), Munich:

Accedo-Verlag, pp. 605-607.

[19] D. Leech and R. Leech (2006). “Voting Power in the Bretton Woods Institutions”, in A. Paloni

and M. Zanardi (Eds.), The IMF, World Bank and Policy Reform, London: Routledge, pp.

29-48.

[20] G. Owen (1977). “Values of games with a priori unions”, in R. Henn and O. Moeschlin (Eds.),

Mathematical Economics and Game Theory. Berlin: Springer-Verlag, pp. 76–88.

[21] G. Owen (1982). “Modification of the Banzhaf-Coleman index for games with a priori unions”,

in M.J. Holler (Ed.), Power, Voting and Voting Power, Würzburg: Physica-Verlag, pp. 232–

238.

[22] G. Owen and E. Winter (1992). “Multilinear extensions and the coalitional value”, Games

and Economic Behavior, 4, 582-587.

[23] L.S. Penrose (1946). “The elementary statistics of majority voting”, Journal of the Royal

Statistical Society, 109, 53-57.

[24] L.S. Shapley and M. Shubik (1954). “A method for evaluating the distribution of power in a

committee system”, American Political Science Review, 48, 787-792.

[25] A.D. Taylor and W.S. Zwicker (1999). Simple Games, Princeton, NJ: Princeton University

Press.

[26] F. Turnovec (1998). “Monotonicity and power indices”, in T.J. Stewart and R.C. van den

Honert (Eds.), Trends in Multicriteria Decision Making, Lectures Notes in Economics and

Mathematical Systems 465, Berlin: Springer-Verlag, pp. 199–214.

[27] F. Turnovec, J.W. Mercik, and M. Mazurkiewicz (2007). “National and ideological influence

in the European Parliament”, unpublished paper presented at the 1st World Public Choice

Society Meeting in Amsterdam.

[28] M. Vázquez Brage, A. van den Nouweland, and I. Garćıa-Jurado (1997). “Owen’s coalitional
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